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Preface

It is a pleasure to welcome you to the proceedings of the second International
Castle Meeting on Coding Theory and its Applications, held at La Mota Castle
in Medina del Campo. The event provided a forum for the exchange of results
and ideas, which we hope will foster future collaboration. The first meeting was
held in 1999, and, encouraged by that experience, we now intend to hold the
meeting every three years.

Springer kindly accepted to publish the proceedings volume you have in your
hands in their LNCS series. The topics were selected to cover some of the areas
of research in Coding Theory that are currently receiving the most attention.
The program consisted of a mixture of invited and submitted talks, with the
focus on quality rather than quantity. A total of 34 papers were submitted to
the meeting. After a careful review process conducted by the scientific committee
aided by external reviewers, we selected 14 of these for inclusion in the current
volume, along with 5 invited papers. The program was further augmented by
the remaining invited papers in addition to papers on recent results, printed in
a separate volume.

We would like to thank everyone who made this meeting possible by helping
with the practical and scientific preparations: the organization committee, the
scientific committee, the invited speakers, and the many external reviewers who
shall remain anonymous. I would especially like to mention the General Advisor
of the meeting, Øyvind Ytrehus. Finally I extend my gratitude to all the authors
and participants who contributed to this meeting.

We thank the official institutions that sponsored our efforts: the Proyecto
Consolider “Ingenio Mathematica” and the University of Valladolid.

This preface would not be complete without a few words about the special
environment provided by the castle that gave its name to the meeting. La Mota
Castle was built on the remains of a moorish castle from the 12th century. The
current architecture is from the 15th century. In those days, the castle was one of
the biggest and most important castles in Europe, located in Medina del Campo,
one of the main trade centers of the Spanish Empire. The castle has lodged
historical characters like Queen Isabel the Catholic and her daughter Joan the
Mad, and its dungeons have provided accommodation for other prominent guests
like César Borgia (who managed to escape by use of a file and a rope). We are
sure such an atmosphere will generate inspiration for future work on the topics
of the meeting and in many other directions.

July 2008 Ángela Barbero
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A Diametric Theorem in Zn
m for Lee and Related

Distances

Rudolf Ahlswede1 and Faina I. Solov’eva2

1 Universität Bielefeld, Fakultät für Mathematik, Postfach 100131, 33501 Bielefeld,
Germany

hollmann@math.uni-bielefeld.de
2 Sobolev Institute of Mathematics and Novosibirsk State University,

pr. ac. Koptyuga 4, Novosibirsk 630090, Russia
sol@math.nsc.ru

Abstract. We present the diametric theorem for additive anticodes with
respect to the Lee distance in Zn

2k , where Z2k is an additive cyclic group
of order 2k. We also investigate optimal anticodes in Zn

pk for the homo-
geneous distance and in Zn

m for the Krotov-type distance.

1 Introduction

In this paper we establish the diametric theorem for optimal additive anticodes
in Zn

2k with respect to the Lee distance, where Z2k is any additive cyclic group
of order 2k. We also study additive anticodes for related distances such as the
homogeneous distance, see [7], and the Krotov-type distance, see [13].

Farrell [8], see also [15], has introduced the notion of an anticode (n, k, d)
as a subspace of GF (2)n with diameter constraint d (the maximum Hamming
distance between codewords) and dimension k. In fact earlier anticodes were
used by Solomon and Stiffler [16] to construct good linear codes meeting the
Griesmer bound, see also [6]. Such anticodes may contain repeated codewords.

Like in [1] we study anticodes without multiple codewords. The notion of an
optimal anticode investigated in the paper is different from the notion in [15],
Chapter 17. Let Gn be the direct product of n copies of a finite group G defined
on the set X = {0, 1, . . . , q − 1}. We investigate

AGn(d) = max{|U| : U is a subgroup of Gn with D(U) ≤ d},

where D(U) = max
u,u′∈U

d(u, u′) is the diameter of U , d(·, ·) is the Hamming distance

for any finite group G, the Lee distance or the homogeneous distance for any
cyclic group Zpk , where p is prime, or a Krotov-type distance for Zn

m. In [4] the
complete solution of the long standing problem of determining

max{|U| : U ⊂ Xn with DH(U) ≤ d},

for the Hamming distance d, is presented and all extremal anticodes are given.
Another diametric theorem in Hamming spaces for group anticodes is established

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 1–10, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



2 R. Ahlswede and F.I. Solov’eva

in [1]: for any finite group G, every permitted Hamming distance d, and all n ≥ d
subgroups of Gn with diameter d have maximal cardinality qd.

In Section 2 we give necessary definitions and auxiliary results from [1], in
Sections 3 and 4 we prove the diametric theorem for Zn

2k with respect to the Lee
distance, in Section 5 we investigate optimal anticodes in Zn

pk endowed with the
homogeneous distance, and Section 6 is devoted to optimal anticodes in Zn

m for
Krotov type distances.

2 Preliminary Definitions and Auxiliary Results

Throughout in what follows we consider groups additive and write the concate-
nation of words multiplicative, i.e. for un ∈ Zn

m we use un = u1u2 . . . un. The
all-zero word of length n is denoted by 0n.

Definition 1. For any U ⊂ Xn and S ⊂ X , where S �= ∅, we define

US = {u1 . . . un−1 : u1 . . . un−1s ∈ U for all s from S
and u1 . . . un−1s �∈ U for all s from X � S}.

From this definition we have the property

US ∩ US′ = ∅ if S �= S′. (2.1)

Definition 2. For any U ⊂ Xn we define

U(n) = {un ∈ X : there exists a word u1 . . . un−1 such that u1 . . . un−1un ∈ U}.
For two sets U ,V ⊂ Xn their cross-diameter is defined as

D(U ,V) = max
u∈U ,v∈V

d(u, v).

Let G be any finite Abelian group. Denote by S0 a subset of G containing 0.
Further we will use the following three lemmas, which can be found in [1].

Lemma 1. For any subgroup U of Gn (briefly U < Gn) a non-empty subset
U{0}0 of U is its subgroup.

Lemma 2. (Generalization of Lemma 1) If U < Gn then for a non-empty subset
US00 from U it is true that US00 ≤ U .

Lemma 3. If U is a subgroup of Gn, then

(i) There is exactly one subset S0 in G with US0 �= ∅;
(ii) The set S0 is a group;
(iii) The set US0S0 is a subgroup of U .

By Lemma 3 we have US0S0 ≤ U , so we can decompose a group U into cosets of
the subgroup US0S0:

U =
⋃
α

(US0 + α)(S0 + ψ(α)) (2.2)

for suitable ψ.
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3 A Diametric Theorem in Zn
2k for Lee Distance

Let Zm be an additive cyclic group of order m. The Lee weight of i ∈ Zm is
defined as

wL(i) = min{i, m− i}.

For u = (u1, . . . , un) ∈ Zn
m, wL(u) =

n∑
i=1

wL(ui) and for u, v ∈ Zn
m the Lee

distance between u and v is

dL(u, v) = wL(u − v).

Let U be any subgroup of Zn
m. The Lee diameter of U we define as

DL(U) = max
u,v∈U

dL(u, v).

For any two sets U ,V ⊂ Zn
m their Lee cross-diameter is

DL(U ,V) = max
u∈U ,v∈V

dL(u, v).

It is well-known that the order of any group is divisible by the order of any of
its subgroups.

Let Zm be an additive cyclic group, then for any r|m denote by
(

m
r

)
the

subgroup of Zm generated by the element m
r . It can be written in the form(m

r

)
=
{

0,
m

r
, 2

m

r
, . . . , (r − 1)

m

r

}
and has an order r.

Lemma 4. (Diameter of a subgroup
(

m
r

)
of Zm) For any r|m we have

D
((m

r

))
=
{

D(Z2k) = 2k−1 if m = 2k for some k ≥ 1,
	 r−1

2 
 · m
r otherwise.

Proof. First consider the case m = 2k, k ≥ 1. Any subgroup of the group Z2k

is a cyclic group (2r−s) for some s ∈ {0, 1, . . . , k} with the generator 2r−s. It is
easy to see that any subgroup (2r−s) contains the element 2k−1 ∈ Z2k . The Lee
weight of this element is

wL(2k−1) = min{2k−1, 2k − 2k−1} = 2k−1.

By the definition of the Lee weight we have

wL(2t) < wL(2k−1)

for any t �= k − 1. Then

D((2r−s)) = 2k−1 for any s from {0, 1, . . . , k}.
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Let now m be any integer not equal to a power of 2 and let r be any integer
such that r|m. By the definition of the subgroup

(
m
r

)
we have(m

r

)
=
{

0,
m

r
, 2

m

r
, . . . , (r − 1)

m

r

}
and the order of

(
m
r

)
is |
(

m
r

)
| = r. Then we have r − 1 non-zero elements

in
(

m
r

)
distinguished by pairs i · m

r and (r − 1 − i)m
r , such that wL(i · m

r ) =
wL((r − 1− i)m

r ) = i · m
r for i = 1, . . . , � r−1

2 �. If r is even we have one maximal
element 	 r−1

2 
 · m
r with wL(	 r−1

2 
 · m
r ) = 	 r−1

2 
 · m
r . It is easy to see that wL(i ·

m
r ) < wL(	 r−1

2 
 · m
r ) for any i < 	 r−1

2 
 regardless of the parity of r. Therefore
D((m

r )) = 	 r−1
2 
 · m

r .

Lemma 4 has the following useful consequences.

Corollary 1. Let r = 2l be even and r|m, then D
((

m
r

))
= D(Zm) = m

2 .

Corollary 2. Let r = 2l + 1 be odd and r|m, then D
((

m
r

))
= l

2l+1m < m
2 .

Corollary 3. For any odd r or s such that r|m, s|m, and s > r we have
D
((

m
s

))
> D

((
m
r

))
.

Remark 1. Like for the Hamming distance (see [1]) in the Lee case for m = 2k

all subgroups of Zm have the same diameter. This makes the approach via the
transformation L introduced in [1] possible.

Lemma 5. For any odd r and s such that r|m, s|m and s > r we have

log2 s

D
((

m
s

)) >
log2 r

D
((

m
r

)) . (3.1)

Further, if r is even and the other relations hold again, the inequality also holds.
In particular for s = pj, r = pi, j > i it is true

j

D((pk−j))
>

i

D((pk−i))
.

Proof. By Corollary 2 it suffices to show for any natural number l that

2l + 1
l

log2(2l + 1) <
2l + 3
l + 1

log2(2l + 3),

or that
(2l + 1)

2l+1
l < (2l + 3)

2l+3
l+1 ,

or
(2l + 1)2l2+3l+1 < (2l + 3)2l2+3l,

which is equivalent to

(2l + 1) <

(
2l + 3
2l + 1

)2l2+3l

=
(

1 +
2

2l + 1

)2l2+3l

.
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Since (1 + a)n + 1 + na ≥ 1 + na sufficient is

1 +
2(2l2 + 3l)

2l + 1
> 1 + 2l,

or, equivalently, 4l2 + 6l > 4l2 + 2l, which is true.
The final statement holds by Corollaries 1 and 2.

Remark 2. In summary, having again the relations r|m, s|m, and s > r, the
inequality (3.1) can fail only for r odd and s even. Since in this case D((m

s )) = m
2 ,

the weakest counterexample could be for r = 2l+1 and s = 2l+2. Here we have
to find l such that

log2(2l + 2)
	 2l+1

2 
 m
2l+2

<
log2(2l + 1)
	 2l

2 

m

2l+1

or, equivalently, with

2l log2(2l + 2) < (2l + 1) log2(2l + 1)

or with (
1 +

1
2l + 1

)2l

< 1 + 2l.

Since the term to the left is smaller than e this holds for all l = 1, 2, . . . .

On the other hand for s = 2l′ + 2, l′ > l we have to check whether

2l log2(2l′ + 2) < (2l + 1) log2(2l + 1).

This fails for l′ ≥ l′0(l), suitable.

Remind that by S0 we denote a subset of Z2k containing 0.

Lemma 6. If for any subgroup U < Zn
2k , k ≥ 1, of diameter d it is true that

|S0| ≥ 2, then the transformation

L :
⋃
S
USS →

(⋃
S
US

)
Z2k

results in a group of diameter not more than d and not decreased cardinality.

Proof. First we show that the transformation L does not decrease the cardinality.
Consider the decomposition (2.2). Every un−1 occuring in some US0 + α has
multiplicity

|S0 + ψ(α)| = |S0|
and gets by the transformation L the multiplicity |Z2k | ≥ |S0|. So the cardinality
does not decrease.

Furthermore by (2.2) and Lemma 4 we have

D(US0) = D(US0 + α) ≤ d− 2k−1
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and also
D(US0 + α,US0 + α′) ≤ d′ − 2k−1,

where d′ ≤ d.
Using the transformation L and Lemma 4 we get

D

((⋃
S
US

)
· Z2k

)
≤ d− 2k−1 + 2k−1 = d.

Hence the transformation L is appropriate, i.e. does not decrease the cardinality
and does increase the diameter d.

Lemma 7. If for any subgroup U < Zn
2k , k ≥ 1 of diameter d it is true that S0 =

{0}, then there exist appropriate transformations of the group U into another
subgroup of Zn

2k that do not decrease the cardinality and do not increase the
diameter d.

Proof. For S0 = {0} the decomposition (2.2) transforms into the decomposition

U =
⋃

i∈U(n)

(U{0} + ϕ(i))i, (3.2)

where U(n) is from Definition 2. All cosets U{0} + ϕ(i), i ∈ U(n), are disjoint or
equal.

We distinguish two cases.
Case 1: Since the set U{0} by Lemma 2 is a subgroup for the case if there exist
i, j, i �= j, such that

U{0} + ϕ(i) = U{0} + ϕ(j),

then ϕ(i)− ϕ(j) ∈ US0 .

Case 1a: If dL(i, j) = 2k−1 then

D(U{0} + ϕ(i)) = D(U{0}) = d− 2k−1.

In this case we use the transformation L, i.e. replace all i by Z2k .

Case 1b: Let d(i, j) = 2s < 2k−1. W.l.o.g. we consider the case U{0} = U{0} +
ϕ(i), where d(0, i) = 2s. Since U(n) is a subgroup in Z2k by Lemma 4 we have
D(U(n)) = 2k−1. Therefore we can find in U(n) an element 2k−1. Either U{0} =
U{0}+ϕ(2k−1) or U{0} �= U{0}+ϕ(2k−1) we have D(U{0}) = D(U{0}+ϕ(2k−1)) =
d− 2k−1.

In both cases we use the transformation L, i.e. replace U(n) by Z2k (the smaller
one we replace by Z2k not changing the diameter).

Case 2: If U{0} + ϕ(i) �= U{0} + ϕ(j) for any distinct i, j from {0, 1, . . . , 2k − 1},
then we replace all i by 0 and get the subgroup in Zn

2k with the same cardinality
as the group U and the diameter does not increase.
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From Lemmas 1-4, 6, and 7 we get

Theorem 1. For any cyclic group Z2k , k ≥ 1, with respect to the Lee distance
it holds

AZn
2k(d) = |Z2k |min(n,� d

2k−1 �) = 2k min(n,� d

2k−1 �).

4 Optimal Direct Products of Cyclic Groups with
Specified Lee Diameter

Let us consider maximal direct products of subgroups in Zpk with n factors and
Lee diameter not exceeding d, p > 2. Recall that by Lemma 4

D

((
pk

ps

))
= D((pk−s)) = 	p

s − 1
2


 · pk−s

and write Fps = (pk−s).
Clearly, for k > s ≥ t ≥ 1 it is true that |Fps | · |Fpt | = |Fps+1 | · |Fpt−1 | and

D(Fps) + D(Fpt) ≥ D(Fps+1) + D(Fpt−1 ), (4.1)

because this is equivalent with

	p
s − 1
2


p
k

ps
+ 	p

t − 1
2


p
k

pt
≥ 	p

s+1 − 1
2


 pk

ps+1
+ 	p

t−1 − 1
2


 pk

pt−1
,

which is equivalent to

1
2
− 1

2ps
+

1
2
− 1

2pt
≥ 1

2
− 1

2ps+1
+

1
2
− 1

2pt−1

or to
1

ps+1
+

1
pt−1

≥ 1
ps

+
1
pt

or
pt−1 + ps+1 ≥ pt + ps.

This is true, because ps+1 > 2ps > ps + pt.
From (4.1) readily follows

Lemma 8. For cardinality pT , T = ak + t, 0 ≤ t < k, the group
a∏
1

Fpk ·Fpt has

the smallest diameter, namely

D

(
a∏
1

Fpk · Fpt

)
= a

pk − 1
2

+
pt − 1

2
pk−t.

This optimization problem can also be written as the following linear program-
ming problem
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(a) d ≤
k∑

t=1
at · diam(Zpt)

(b) max
{

k∏
t=1

pat·t : integers a1, a2, . . . , ak satisfy (a)
}

or (c) max
{

k∑
t=1

at · t : integers a1, a2, . . . , ak satisfy (a)
}

.

The value of t is f(t) = t
diam(Zpt)

, which can be seen with Lemma 5 to be
monotonically increasing in t.

Therefore it is best to use Zpk as often as possible as factor in the subgroup,
then Zpk−1 as often as possible (under the constraint (a)) etc.

The result easily generalizes from m = pk, Fps , Fpt , s > t, to m =
pα1
1 pα2

2 · · · pαμ
μ , FS = F

p
β1
1 p

β2
2 ···pβμ

μ
, FT = Fp

γ1
1 p

γ2
2 ···pγμ

μ
, S > T . In the case there

exists i such that βi < αi, γi ≥ 1 by taking pi from T and adding it to S.
Obviously for S′ = Spi, and T ′ = T

pi
we have |FS | · |FT | = |FS′ | · |FT ′ | and

D(FS) + D(FT ) ≥ D(FS′ ) + D(FT ′ ) because

	S−1
2 

S

+
	T−1

2 

T

≥
	S′−1

2 

S′ +

	T ′−1
2 

T ′

holds, since it is true the inequality

1
2
− 1

2S
+

1
2
− 1

2T
≥ 1

2
− 1

2S′ +
1
2
− 1

2T ′

as a consequence of S′ + T ′ ≥ S + T .

5 A Diametric Theorem in Zn
pk for Homogeneous Distance

According to [7] the homogeneous weight of i ∈ Zpk is given by

whom(i) =

⎧⎨
⎩

0 if i = 0,
p− 1 if i ∈ Zpk � (pk−1),

p if i ∈ (pk−1) � {0}.
(5.1)

For u = (u1, u2, . . . , un) ∈ Zn
pk , whom(u) =

n∑
i=1

whom(ui) and for u, v ∈ Zn
pk

the homogeneous distance between u and v is dhom(u, v) = whom(u − v). The
homogeneous diameter we define as

Dhom(U) = max
u,v∈U

dhom(u, v)

and for any two sets U ,V ⊂ Zn
pk the homogeneous cross-diameter is

Dhom(U ,V) = max
u∈U ,v∈V

dhom(u, v).

Lemma 4′. (Homogeneous diameter of a subgroup of Zpk) For any integer
i ∈ {1, 2, . . . , k − 1} we have Dhom((pi)) = Dhom(Zpk) = p, where (pi) =
{0, pi, 2pi, . . . , (pk−i − 1)pi} has pk−i elements.
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Proof. Since pk−i−1 ≤ pk−i − 1 and pk−i−1pi = pk−1 we have pk−1 ∈ (pi) for
any i ∈ {1, 2, . . . , k − 1}. Therefore by (5.1)

p = Dhom((pi)) ≤ Dhom(Zpk) = p.

It is easy to see that both Lemmas 6 and 7 have corresponding Lemmas 6′ and
7′, we just have to replace in the proofs 2k−1 by p and note that a subgroup
U < Zpk is of the form (pi) for some i.

Using this and Lemma 4′ we get for

A′Zn
pk(d) = max{|U| : U < Zn

pk with Dhom(U) ≤ d} the following

Theorem 2. For any cyclic group Zpk , k ≥ 1, it is true A′Zn
pk(d) = pk min(n,� d

p �).

6 A Diametric Theorem in Zn
m, m = 4l, for Krotov-Type

Distance

For the cyclic group Zm the Krotov-type weight wK : Zm → R+ is defined by

wK(i) =

⎧⎨
⎩

0 if i = 0,
1 if i is odd,
2 otherwise

(6.1)

(see also [13]). For any word u = (u1, u2, . . . , un) from Zn
m we define the Krotov-

type weight wK(u) =
k∑

i=1

wK(ui), distance dK(u, v) = wK(u − v), diameter

DK(U), and cross-diameter DK(U ,V).
As analog to Lemma 4 we get

Lemma 4′′. (Diameter of a subgroup of Zm for Krotov-type distance) For any
non-trivial U < Zm, m ≥ 2, we have

DK

((m

s

))
=
{

1 if s = 2 and m
2 is odd,

2 otherwise.

The proof easily follows from (6.1) and the fact that any subgroup (m
s ) has an

even element with the one exception if s = 2 and m
2 is odd. Lemmas 6′′, 7′′, the

analogs to Lemmas 6, 7, are valid for the case 4|m. Using these facts and Lemma
4′′ we get.

Theorem 3. For any cyclic group Zm with 4|m with respect to the Krotov-type
distance it is true A′′Zn

m(d) = mmin(n, d
2 ).
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Abstract. The problem of the existence of perfect 2-colorings in John-
son graphs J(6, 3) and J(7, 3) is solved in this paper. Perfect coloring
is a generalization of the notion of completely regular codes, given by
Delsarte [3]. This problem of existence of such structures is closely re-
lated to Delsarte hypothesis about the nonexistence of nontrivial perfect
codes in Johnson graphs, the problem of existence of block schemes,
the problem of existence of completely regular codes in Johnson graphs
and other well-known mathematical problems. Some auxiliary theorems,
which can be applied for treatment of perfect colorings in two colors in
other graphs, are given in this paper.

1 Introduction

Consider the n-cube En = {x = (x1, . . . , xn) : xi ∈ {0, 1}}. The Hamming
distance between vectors x, y ∈ En is defined by d(x, y) =

∑n
i=1(xi ⊕ yi), where

⊕ denotes addition via modulo 2. The Hamming weight of a vector x is the
distance from x to the all-zero vector. A vector x in En is said to precede a
vector y in En (notation: x � y) if xi � yi for all i ∈ {1, . . . , n}. A face Γx

corresponding to a vector x in En is defined as the set {z : z ∈ En, x � z}. A
collection of k-subsets (referred to as blocks) of an n-set such that any t-subset
occurs in λ blocks precisely is called a (λ, n, k, t)-design. A (1,n,k,t)-design is
referred to as a Steiner system and is usually denoted by S(n, k, t). Vertices of
the Johnson graph J(n, w) are all vectors of weight w in En; vertices that are at
distance 2 from each other are connected by edges. It is easily checked that the
Johnson graph J(n, w) is a regular graph of degree w(n−w). The graph metric
in the Johnson graph is called the Johnson metric. For any two vertices x and y
of some Johnson graph dJ (x, y) = d(x, y)/2 holds, where dJ(x, y) is the Johnson
metric between x and y.

By a perfect m-coloring of vertices of a graph G = (V, E) (also known as
an equatable partition, a graph divisor, a regular partition) with a matrix A =
{aij}i,j=1,...,m, we mean a map T from the set of vertices V to the set of colors
{1, 2, . . . , m} such that the color composition of the neighborhood of any vertex
depends only on its color, and the number of vertices of the color j adjacent to a
fixed vertex of the color i is aij . The matrix A is called the matrix of parameters

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 11–19, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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of perfect coloring T . In case m = 2 the colors 1 and 2 symbolize white and
black colors respectively. In what follows we denote the set of all white vertices
by W and the set of all black vertices by B. Perfect colorings were previously
studied in [10],[5], [9].

Let us be given a graph G = (V, E). A sphere of radius i centered at v is defined
as Bi(v) = {w ∈ V : dG(v, w) ≤ i}, where the distance dG is the standard graph
metric on G. An arbitrary subset C of a vertex set V is called a code in graph G.
The covering radius of a code C is ρC = max{d(x, C), x ∈ V (G)}. A subset C of
V is called an e-perfect code in G if spheres of radius e centered at the vertices of
C form a partition of all vertices of G. If C either coincides with V (i.e., e = 0)
or consists of at most two vertices, such a perfect code is called trivial.

In 1973, Delsarte conjectured [3] the nonexistence of nontrivial perfect codes
in Johnson graphs. All presently known results confirm the conjecture (see
[4],[1],[8]). It is easy to note that to a 1-perfect code in a regular graph of degree
(or valence) t, we may assign a perfect 2-coloring. If we suppose such a code to
exist and color all code vertices into white color, and all noncode ones – into
the black color, we obtain a perfect 2-coloring. So, the problem of existence of
perfect 2-colorings in Johnson graphs includes the Delsarte hypothesis.

There are a lot of examples of nonisomorphic 1-perfect codes in En. The
perfect colorings, that arise from these codes are also nonisomorphic, but they
have the matrix of parameters equal. The situation is analogous in Johnson
graphs: there are examples of nonisomorphic perfect 2-colorings with the same
matrix of parameters. For example, there are two nonisomorphic perfect colorings

of J(6, 3) with matrix
(

3 6
4 5

)
. The purpose of this article is to list all parameters

of existing perfect 2-colorings of J(6, 3), J(7, 3) and to validate any matrix by
a construction of perfect coloring. In [10] all perfect 2-colorings of J(n, 2) were
described, so graphs J(6, 3) and J(7, 3) are graphs for which the problem of
existence of perfect 2-colorings was open.

2 Some Properties of Perfect Colorings

Some properties of perfect colorings that will be used in proving the main result
of this paper are given in this section.

Proposition 1. Let T be a perfect coloring of a graph G into two colors with
the matrix A = {aij}i,j=1,2, then the number of white vertices in G is equal to
|V (G)|a21/(a12 + a21).

Proof. Let us consider a graph obtained by deleting all edges (u, v) in graph G
such that u and v are colored in the same color. The graph obtained is biregular
bipartite graph with parts W and B and degrees a12 and a21. On the one hand,
the number of edges in this graph is equal to a12|W |, and on the other hand it
is equal to a21|B|. Taking into account |W | + |B| = |V (G)|, we obtain |W | =
|V (G)|a21/(a12 + a21).
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Let G be an arbitrary graph, C be a code in G. The following sets will be referred
to as layers of a distance partition (with respect to a code C): L0(C) = C
Lj(C) = {y ∈ V : dJ(y, L0(C)) = j} for 0 ≤ j ≤ ρC . Note that V (G) =⋃

0≤j≤ρC
Lj(C). This partition will be referred to as the distance partition of

vertices of G with respect to C. The distance partition with respect to C is
called distance-regular and code C is called completely-regular, if the numbers
of vertices from layers j − 1, j, j + 1 (these numbers are denoted d−j , d0

j and
d+

j respectively) adjacent to a fixed vertex from the layer j depend only on j,
but not on a choice of a fixed vertex from layer j. Completely regular codes
were previously investigated in [11], [9]. If we color every layer from a distance-
regular partition with respect to a completely regular code C into its unique
color, then we obtain a perfect coloring in ρ(C) colors. The matrix of parameters
of such a perfect coloring is a tridiagonal matrix of the set of numbers d−j , d0

j

and d+
j , 0 ≤ j ≤ ρ(C). Also note that any set of vertices of a fixed color (W ,B)

of any perfect coloring into two colors is a completely regular code with covering
radius ρ = 1.

Let T be a perfect coloring of a graph G, and C be a code in G. We denote
lj(C) = |Lj(C) ∩W |.

Theorem 1. Let T with a matrix of parameters A = {aij}i,j=1,2 be a perfect
coloring in two colors of a graph G and C be a completely regular code in G.
Then for all j : 0 ≤ j ≤ ρ(C) we have lj−1(C)d+

j−1 + lj(C)(a21 − a11 + d0
j) +

lj+1(C)d−j+1 = |Lj(C)|a21.

Proof. Let Rj be the set of all edges of J(n, w) with one end (of any color)
belonging to Lj(C) and the other end white. On one hand, a white one can
belong only to one of the layers Lj(C), Lj+1(C), or Lj(C), and the other one of
any color belongs to Lj(C). Let us write this as follows:

|Rj | = lj(C)d0
j + lj+1(C)d−j+1 + lj−1(C)d+

j−1. (2.1)

On the other hand we can write it in this way

|Rj | = lj(C)a11 + (|Lj(C)| − lj(C))a21. (2.2)

Substituting (2.1) in (2.2), we obtain the desired equality.

A graph G is called distance regular, if for any two vertices x and y such that
dG(x, y) = k the number of vertices z : dG(z, x) = i, dG(z, y) = j is equal to
the γi,j,k, that does not depend on a choice of x, y, but only on i, j and k.
The graphs En, J(n, w) are known to be distance regular [2]. A few examples of
completely regular codes in some distance regular graphs are given in following
two statements.

Consequence 1. Let G be a distance regular graph, x be an arbitrary vertex
of graph G, then
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1. The set {x} is a completely regular code in G.
2. Let T be a perfect coloring of G into two colors with matrix of parameters

A = {aij}i,j=1,2, then for any i the number of vertices of white color in Li({x})
is the same for any vertex x from W and for any coloring whose matrix of
parameters is A = {aij}i,j=1,2.

Proof. 1. It is easy to see that the numbers d−j , d0
j and d+

j in the definition of
completely regular code are equal: γj−1,1,j ,γj,1,j and γj+1,1,j respectively.

2. Applying the Theorem 1 to completely regular code {x}, we get the desired
property.

Note that these results hold up to the renaming of colors (the word ”white” can
be replaced by the word ”black”). Let us now consider graph J(n, w). In what
follows V will denote the vertex set of a graph J(n, w). Let C = Γx ∩ V , where
x is a vertex of En of weight i, i ≤ w. In this case we will write Lj(x) and lj(x)
instead of Lj(Γx ∩ V ) and lj(Γx ∩ V ) in through out of what follows.

Theorem 2.[10] Let i be an integer such that 0 ≤ i ≤ w, x be an arbitrary
vector of En of weight i. Then C = Γx ∩V is completely regular code in J(n, w)
with the numbers d+

j = (i− j)(n−w− j), d0
j = (i− j)j + (w− i + j)(n−w− j),

d−j = j(w − i + j), Lj(x) = Cj
i Cw−i+j

n−i , 0 ≤ j ≤ i and
⋃

0≤j≤i Lj(x), L0 = C, is
distance regular partition of J(n, w).

3 Some Constructions of Perfect Colorings of Johnson
Graphs

Following constructions of perfect 2-coloring in Johnson graphs (for more of
those see [10]) will be required to list all parameters of existing perfect colorings
in graphs J(6, 3) and J(7, 3).

Example 1. Fix a coordinate i ∈ {1, . . . , n}. Color in white all vertices of J(n, w)
whose ith coordinate is 0, and color in black all vertices with this coordinate equal
to 1. We get a perfect coloring with the matrix(

w(n− w − 1) w
n− w (w − 1)(n− w)

)
.

Example 2. Consider an arbitrary (s, n, w, w− 1) block scheme in the Johnson
graph J(n, w). Color all vertices of the system in white and all the others in
black. It is easily seen that the matrix of the obtained perfect coloring has the
following form (

w(s − 1) w(n− w)− w(s − 1)
ws w(n − w)− ws

)
.

Example 3. Let us consider a trivial 1-perfect code in J(6, 3) that consists of a
pair of vertices that are at the Johnson distance 3 from each other. If we color
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code vertices in white and all others in black, we obtain a perfect coloring with
the matrix (

0 9
1 8

)
.

4 Eigenvalues of a Graph and Eigenvalues of a Perfect
Coloring

To list all parameters of perfect colorings of J(6, 3) and J(7, 3) the notion of
an eigenvalue of a graph and an eigenvalue of a perfect coloring, along with
the notion of an antipodal graph and an antipodal perfect coloring are required.
These notions with some auxiliary results are presented in the next two sections.
The number θ is called an eigenvalue of a graph G, if θ is an eigenvalue of the
adjacency matrix of this graph. The number θ is called an eigenvalue of a perfect
coloring T into two colors with the matrix A, if θ is an eigenvalue of A. The
following theorem demonstrates the connection between the introduced notions.

Theorem 3 [7]. If T is a perfect coloring of a graph G in m colors, then any
eigenvalue of T is an eigenvalue of G.

Further we will use the eigenvalues of the Johnson graph (see, for example, [6]):

Theorem 4. The eigenvalues of J(n, w) are precisely the set of numbers: θi =
(n− w − i)(w − i)− i, 0 ≤ i ≤ w.

Statement 2. Let T be a perfect coloring into two colors with the matrix of
parameters A = {aij}i,j=1,2 of a regular graph G of valency r. Then the numbers
a11 − a21, r are eigenvalues of T and therefore are eigenvalues of G .

Proof. The result is obtained by straightforward computation of eigenvalues of
A and the application of Theorem 3.

5 Perfect Colorings of the Antipodal Graph into Two
Colors

Graph G is called antipodal, if for any vertex x of graph G there is exactly one
vertex y at the distance, which is equal to the diameter of G. A pair of such
vertices is called antipodal. Obviously, the graphs En, J(2w, w) are antipodal.
Perfect coloring into two colors of a graph G is called plus-antipodal (minus-
antipodal), if any two antipodal vertices are colored in one (two different) color
(colors). We give some properties of such colorings:

Statement 3. Any perfect coloring of the antipodal distance regular graph G
into two colors is either plus-antipodal or minus-antipodal. The perfect colorings
with the identical matrices of parameters are simultaneously plus-antipodal or
minus-antipodal.
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Proof. Let d be the diameter of G, x be an arbitrary vertex of graph G. Taking
into account that G is antipodal, Ld(x) consists exactly of vertex y such that x
and y are antipodal. Then applying Consequence 1 of the Theorem 1, we obtain
that the color of vertex y is unambiguously defined by the color of vertex x.
Because of arbitrary choice of vertices x, y, the result is proven.

Statement 4. Let T be a minus-antipodal perfect coloring of a graph G into two
colors, then the matrix A = {aij}i,j=1,2 is symmetric.

Proof. Since G is antipodal then its vertex set can be divided into pairs of
antipodal vertices, with one of them being white and another one being black.
So, the number of vertices of different colors is the same. Applying Statement 1
we obtain a12 = a21.

6 Perfect Colorings of J(6,3) into Two Colors

From above we have that J(6,3) is antipodal distance regular graph. We will use
this fact while proving the following theorem:

Theorem 5. The only perfect colorings of J(6,3) into two colors are perfect
colorings with matrices:(

0 9
1 8

)
;
(

1 8
2 7

)
;
(

2 7
3 6

)
;
(

3 6
4 5

)
;
(

4 5
5 4

)
(6.1)

(
3 6
6 3

)
and

(
6 3
3 6

)
, (6.2)

with any perfect coloring with the matrix from list (6.1) being plus-antipodal, and
from the list (6.2) being minus-antipodal.

Proof. By Statement 3, an arbitrary perfect coloring into two colors of a graph
J(6, 3) is either plus-anipodal, or minus-antipodal. Let us list all parameters
of existing plus-antipodal colorings of J(6, 3) into two colors. Consider a perfect
coloring from Example 3: two antipodal vertices of J(6, 3) form a trivial 1-perfect
code in J(6, 3), and therefore induce perfect coloring. Due to its structure, this
coloring is plus-antipodal. Since the set of vertices of antipodal graph parts
on pairs of antipodal vertices, then the set of vertices of J(6, 3) parts into 10
perfect codes, each of them inducing plus-antipodal coloring. We can obtain a
new coloring from this partition. We arbitrarily divide these 10 perfect codes
into two groups and color the group of the smaller size with white color, and
other with black. Then we obtain perfect coloring with the matrix(

i− 1 9− i + 1
i 9− i

)
,

where i, 1 ≤ i ≤ 5 is the number of perfect codes in the group of the smaller size.
So we obtain five perfect colorings with parameters from the list (6.1). Note that
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any such perfect coloring is plus-antipodal due to its construction. It is obvious
that this is exactly all plus-antipodal perfect colorings of J(6, 3) into two colors.

Now we list all parameters of minus-perfect colorings. By Theorem 4, the set
of eigenvalues of J(6, 3) is {9,-3,3,-1}. This and Statements 2 and 4, imply that
a matrix of arbitrary minus-antipodal perfect coloring of J(6, 3) is only one of

the matrices from the following list:
(

4 5
5 4

)
;
(

3 6
6 3

)
;
(

6 3
3 6

)
. We have shown the

existence of plus-antipodal coloring with the matrix
(

4 5
5 4

)
, so by Statement 3

there is no minus-antipodal perfect coloring of J(6,3) with this matrix. Because
of existence of 2-fold Steiner systems in J(6, 3) and according to Examples 1 and
2 perfect colorings with parameters from (6.2) do exist.

7 Perfect Colorings of J(7,3) into Two Colors

As the graph J(7, 3) is not antipodal, the methods used in the previous section
can not be applied here. The proof of the following theorem is based on the fact
that the Johnson graph is distance regular and the application of Theorem 2.

Theorem 5. The only perfect colorings of J(7, 3) into two colors are perfect
colorings with matrices: (

9 3
4 8

)
; (7.1)

(
0 12
3 9

)
;
(

3 9
6 6

)
. (7.2)

Proof. According to Example 1 there is the perfect coloring of J(7,3) with matrix
(7.1). Also there is a 1-fold and 2-fold Steiner triple systems in J(7, 3), therefore,
using Example 2 we obtain perfect colorings of J(7, 3) with the matrices from
the list (7.2). We now show that there is no perfect colorings of J(7,3) with
matrices different from listed above. We prove it by contradiction.

Let T be a perfect coloring with the matrix A = {aij}i,j=1,2, which is different
from (7.1),(7.2). By Theorem 4 the numbers θ0 = 12, θ1 = 5, θ2 = 0, θ3 = −3
are eigenvalues of J(7, 3). By Statement 2 the equality a11 − a21 = θk holds for
some k ≥ 1.

Let k = 1. In this case by Statement 2 we have a21 = a11−5. We now use the
equations that arise from Theorem 2 while considering distance regular partition
with respect to one vertex, say x, of J(7, 3). These are:

−5l0 + l1 = a11 − 5;

12l0 + 4l2 = 12(a11 − 5);

6l1 + l2 + 9l3 = 18(a11 − 5);

2l2 − 2l3 = 4(a11 − 5).
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Taking into account L0 = x and depending on the color of the vertex x, we
have the following equalities:

l0 = 0, l1 = a11 − 5, l2 = 3(a11 − 5), l3 = a11 − 5

and
l1 = 0, l1 = a11, l2 = 3(a11 − 6), l3 = a11 − 8.

Since the number of white colored vertices in any set is a nonnegative integer,
we have a11 ≥ 8. In the case l0 = 0 the number of the white vertices on the third
layer equals to a11− 5, so the number of black vertices on the same layer equals
|L3|− (a11−5) = 9−a11, which is also nonnegative integer number. In the cases
a11 = 8 and 9, we have, up to the renaming of colors, matrix A equal to (7.1).

Let k = 2. Then, using Statement 2, we get a21 = a11. By Statement 1 the
number of white vertices in J(7, 3) equals (a11|V (J(7, 3))|)/12 = (a1135)/12.
Integers 35 and 12 being coprime, so we obtain a11 = 12. Therefore a12 equals
0, and, taking into account that a21 = 12 is nonzero, we get the contradiction.

Let k = 3. Then, again using Statement 2 we obtain a11 − a21 = −3. If a11 is
divisible by 3, then T is, up to the renaming of the colors, a perfect coloring with
the one matrix from the list (7.2). If a11 is not divisible by 3, then, by Statement
1, the number of white vertices of the graph J(7, 3) equals (a11 + 3)/15 and we
get a contradiction.

8 Conclusion

In general the problem of existence of all perfect colorings of Johnson graphs is
far from being solved. Particulary, this problem includes the Delsarte conjecture
about nonexistence of nontrivial perfect codes in Johnson graphs, along with
the question of existence of Steiner systems which is still open. In this paper
all parameters of existing perfect colorings in Johnson graphs J(6, 3), J(7, 3)
(the graphs with the smallest parameters for which this problem was open) were
listed, some approaches for solving this problem for Johnson graphs were given.
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A Syndrome Formulation of the Interpolation

Step in the Guruswami-Sudan Algorithm
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DTU-Mathematics, Technical University of Denmark
Kgs. Lyngby, DK-2800, Denmark

1 Introduction

Let Fq be a finite field with q elements and C ⊂ Fn
q a code of length n. If c ∈ C

and h = (h1h2 · · ·hn) is a row of a parity check matrix of C, then it is clear that
h · c = 0. Such parity checks can therefore be used to test if a given word w ∈ Fn

q

is an element of C, but it turns out that the expressions h · w (usually called
syndromes of w) can be useful in decoding algorithms as well. The link between
decoding and syndromes is an old one. Indeed the first known algorithm for the
decoding of Reed-Solomon codes (Peterson’s algorithm) uses syndromes. Now let
P = {x1, . . . , xn} be a subset of Fq consisting of n distinct elements. We can see
an RS-code of dimension k ≤ n as the set of all n-tuples that arise by evaluating
all polynomial f(x) of degree less than or equal to k−1 in the points x1, . . . , xn.
The syndromes of a word w that are used in Peterson’s decoding algorithm are
the following:

sλ(w) =
n∑

i=1

xλ
i wi.

After Sudan’s algorithm for list decoding of RS-codes was discovered [13], again
a reformulation in terms of certain generalized syndromes turned out to be
useful [9]. These generalized syndromes can be seen as syndromes of words
we := (we

1, . . . , w
e
n). Although the theoretically fastest, currently known de-

coding algorithms (see [1]) do not use syndromes, it turns out that for many
practical parameters, the algorithm in [9] and variations of it is still the most
desirable. Although generalized syndromes appear for the first time to describe
list decoding algorithms, they can also be used to describe interesting decoding
algorithms for RS-codes (see [2]).

All in all, it is clear that the usage of generalized syndromes is an ongoing
and fruitful proces. The more general Guruswami-Sudan algorithm [6] for list
decoding has not been reformulated in terms of syndromes in full generality,
although there are interesting results in case of RS-codes (see [10]). The goal of
this paper is to fill this gap in the literature and to clarify previous results. We
will do this in complete generality for AG-codes generalizing previous results in
[3]. The paper is organized as follows: in Section 2, we describe the Guruswami-
Sudan algorithm, in Section 3 we develop the necessary tools and reformulate the
Guruswami-Sudan algorithm in terms of syndromes, which is our main result,
and in Section 4 we give an example.

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 20–32, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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We will use the following list of notations:

Fq a finite field with q elements

χ an algebraic curve defined over a finite field Fq.

g the genus of χ.

F the function field of the curve χ with constant field Fq.

P1, . . . , Pn rational points on χ.

D the divisor P1 + · · ·+ Pn.

G and A rational divisors with supports disjoint from suppD.

EvD () evaluation map defined by EvD (f) = (f(P1), . . . , f(Pn)).

CL(D, G) the evaluation code EvD (L(G)).

ResD() residue map defined by ResD(ω) = (resP1(ω), . . . , resPn(ω)).

CΩ(D, G) the residue code ResD(Ω(−D + G)).

As standard references for the theory of algebraic curves and algebraic function
fields, we use [12,5]. The last reference is especially useful for checking facts on
Hasse-derivatives, which we use in Section 3.

2 List-Decoding Using the Guruswami-Sudan Algorithm

In this section we will describe the Guruswami-Sudan list decoding algorithm
for algebraic geometry codes. List decoding was introduced by P. Elias in 1957
[4] and in 1997 M. Sudan presented a list decoder for Reed-Solomon codes [13],
which was extended to algebraic geometry codes by Shokrollahi and Wasserman
in [11]. These algorithms only gave an improvement for small rates but in 1999
V. Guruswami and M. Sudan [6] generalized the algorithms to cover all rates.

Suppose that we are given a curve χ defined over a finite field Fq with function
field F . We wish to use the AG-code CL(D, G) and therefore assume that we
have received the word (r1, . . . , rn) containing at most τ errors. The Guruswami-
Sudan list decoding algorithm works with a divisor A with supp A∩ supp D = ∅
satisfying certain conditions that we describe below and a natural number s.

The idea of the algorithm is to find a nonzero polynomial Q(y) ∈ F [y] such
that:

(i) Q(y) = Q0 + Q1y + · · ·+ Qλyλ where Qi ∈ L(A− iG), i = 0, . . . , λ
(ii) Q(y) has a zero of multiplicity s in (Pj , rj), j = 1, . . . , n

The meaning of (ii) is the following: Let t be a local parameter at Pj then
Q(y) =

∑
μa,bt

a(y− rj)b. That Q(y) has a zero of multiplicity s in (Pj , rj) then
means that μa,b = 0 for a + b < s.

The conditions on the divisor A are as follows.
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(1) deg A < s(n− τ)
(2) deg A > ns(s+1)

2(λ+1) + λ deg G
2 + g − 1

It can be seen that if τ < n− n(s+1)
2(λ+1) −

λ deg G
2s − g

s then such a divisor A exists.

Lemma 1. Suppose the transmitted word is generated by f ∈ L(G) and Q(y)
satisfies (i) and (ii) then Q(f) = 0.

Proof. Since f ∈ L(G) and Qi ∈ L(A− iG) we have f iQi ∈ L(A) and therefore
Q(f) ∈ L(A). We also have that Q(f(Pj)) has a zero of multiplicity s in Pj for
at least n − τ j’s ∈ {1, 2, . . . , n} so that Q(f) ∈ L(A − sPi1 − · · · − sPir ) with
r ≥ n − τ . But deg(A − sPi1 − · · · − sPir ) < 0 and therefore Q(f) = 0. This
implies that if the divisor A satisfies condition (1) above then the function f
that generated the sent codeword gives a factor y − f in Q(y).

Lemma 2. If deg A satisfies (2) above then a nonzero Q(y) ∈ F [y] exists satis-
fying (i) and (ii).

Proof. By selecting bases for the spaces L(A− iG), i = 0, 1, . . . , λ the condition
(ii) translates into a system of homogeneous linear equations in

∑λ
i=0 l(A− iG)

unknowns. The number of equations is n(s+1)s
2 which by (2) is smaller than the

number of unknowns, so there is a nonzero solution to the system.

This leads to the following algorithm:

Input: A received word r = (r1, r2, . . . , rn).
Find a polynomial Q(y) satisfying (i) and (ii).
Find factors of Q(y) of the form y − f with f ∈ L(G).
If no such factors exist Output: Failure.
Else Output : EvD (f) for those f ’s where d(EvD (f), r) ≤ τ .

It can be seen that this list decoding algorithm only improves on n−deg G
2 if λ ≥ s

and

n
(
1− s+1

λ+1

)
>
(

λ
s − 1

)
deg G + 2g

s + 1

and also that for fixed λ the optimal s is⌊[
2(λ+1)

n

(
λ
2 deg G + g

)] 1
2
⌋

Example 1. In this example, which is taken from [7], we consider the Hermitian
curve over F4 defined by x2

2 + x2 = x3
1. We write F4 = F2[α] with α2 = α + 1.

Also we write P1 = (0, 0), P2 = (0, 1), P3 = (1, α), P4 = (1, α2), P5 = (α, α),
P6 = (α, α2), P7 = (α2, α), P8 = (α2, α2), and denote by T∞ the unique pole of
x1. We now take D = P1+ · · ·+P8, G = 4T∞, and A = 35T∞. If we choose s = 6
and λ = 8, we can correct 2 errors using the list decoder. In order to describe the
list-decoding procedure, we need to choose bases for the spaces L(A−iG), whose
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dimension we denote by li. In this case we can for 0 ≤ i ≤ λ and 1 ≤ j ≤ li
choose

gij =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1 if j = 1,

x1x
(j−2)/3
2 if j ≡ 2 mod 3,

x
j/3
2 if j ≡ 0 mod 3,

x2
1x

(j−4)/3
2 if j > 1 and j ≡ 1 mod 3.

Suppose that we transmit the all zero word and receive.

(α2, 0, 0, α2, 0, 0, 0, 0).

We now use list decoding for s = 6 and λ = 8. To find an interpolation polyno-
mial we could solve the linear system occurring in the proof of Lemma 2. This
system has 168 equations and 171 variables. However, we will see in Section 3
that this approach is not optimal. In Section 4 we will use the results from Sec-
tion 3 and get that an interpolation polynomial is given by:

Q(y)= (1 + x2 + αx2
2 + αx2

1x2 + α2x1x2
2 + αx3

2 + α2x2
1x2

2 + αx1x3
2 + x4

2 +

αx2
1x3

2 + α2x1x4
2 + x2

1x4
2 + αx1x5

2 + α2x2
1x5

2 + αx1x6
2 + x7

2 + αx2
1x6

2 +

x1x7
2 + x8

2+ x2
1x7

2+ αx1x8
2+ αx9

2+ α2x2
1x8

2+ x1x9
2+ α2x10

2 + x2
1x9

2)y+

(α2 + αx1+αx2
1+x2

2+α2x2
1x2+α2x3

2+x2
1x2

2+α2x1x3
2+α2x5

2+x2
1x4

2+

x2
1x4

2+ α2x6
2+αx2

1x5
2+αx7

2+α2x2
1x6

2+αx1x7
2+x8

2+α2x1x8
2+αx9

2)y
2+

(α2+ αx2+ x1x2 + α2x2
1x2 + x1x2

2 + αx3
2 + x2

1x2
2 + α2x4

2 + α2x2
1x3

2+

αx5
2+ αx2

1x4
2+α2x1x5

2+ αx6
2+ α2x2

1x5
2+ α2x1x6

2)y
3+(α+x1+α2x2+

x1x2+ αx2
2 + α2x2

1x2 + αx1x2
2 + x3

2 + αx1x3
2 + αx4

2 + x2
1x3

2)y
4+ (α+

α2x2+α2x1x2+x2
2+ x2

1x2+ x1x2
2+ α2x2

1x2
2+ αx1x3

2)y
5+ (1+ α2x1+

αx2 + α2x2
1 + α2x1x2 + x2

2 + α2x2
1x2)y

6 + y7 + (α2 + αx1)y8.

As we have seen, and we will discuss this further in the next section, the poly-
nomial Q(y) can be found by solving a system of homogenous linear equations.

3 Syndrome Formulation of List Decoding

In this section we will formulate the list decoding algorithm using syndromes.
The advantage is that one can eliminate variables from the system of linear
equations used to determine the interpolation polynomial. This approach is not
new, especially not in case of Reed-Solomon codes, see e.g. [9,10], but we will
state a more general result than is known until now, though for Hermitian codes
there exists also some relevant literature (see e.g. [3,8]).

As discussed in the previous section, in order to list-decode we need a poly-
nomial Q(y) =

∑λ
i=0 Qiy

i such that Qi ∈ L(A− iG) and such that (Pl, rl) is a
zero of Q(y) of multiplicity s for all i between 1 and n. We denote by gi1, . . . , gili

a basis of L(A− iG) and write Qi =
∑li

j=1 qijgij . The condition that (Pl, rl) is a
zero of Q(y) of multiplicity s gives rise to

(
s+1
2

)
linear equations in the coefficients

qij . More explicitly, we can do the following: first for any Pl ∈ supp D we choose
a function tl ∈ F such that vPl

(tl) = 1. Given such a tl, we can write a function
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g that is regular at Pl as a power series in tl, say g = α0 +α1t+ · · ·+αata + · · · .
We have that α0 = g(Pl). The αa depend in general on Pl and the choice of
tl ∈ F . Denoting by D

(a)
tl

the a-th Hasse-derivative with respect to tl, we then
have that D

(a)
tl

(g)(P ) = αa, so we can describe the power series purely in terms
of Hasse-derivatives. We extend the Hasse-derivative to F [y] by first defining

D(b)
y D

(a)
tl

(gyj) :=
(

j

b

)
D

(a)
tl

(g)yj−b

and then by extending it linearly to F [y]. This definition ensures that if we
develop the polynomial Q(y) in a power series in the variables tl and y− rl, then
the coefficient of tal (y − rl)b is given exactly by D

(b)
y D

(a)
tl

(Q(y))(Pl, rl).
By the approximation theorem there exists t ∈ F such that vP (t) = 1 for

all P ∈ supp D. We will therefore for convenience assume from now on that
tl = t does not depend on l. The

(
s+1
2

)
equations coming from the condition

that (Pl, rl) is a zero of Q(y) of multiplicity s can now be described as follows:

D(b)
y D

(a)
t (Q(y))(Pl, rl) = 0, for all a, b with a + b < s,

or equivalently

λ∑
i=b

(
i

b

)
ri−b
l

li∑
j=1

qijD
(a)
t (gij)(Pl) = 0, (1)

for all
(
s+1
2

)
pairs of nonnegative integers (a, b) such that a + b < s.

We would like to write these equations in matrix form

M

⎛
⎜⎝

q0

...
qλ

⎞
⎟⎠ =

⎛
⎜⎝

0
...
0

⎞
⎟⎠ . (2)

For 0 ≤ b ≤ s−1 and b ≤ i ≤ λ, we therefore introduce the following (s−b)n× li
matrix:

M(i−b)
i :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

gi1(P1) . . . gili(P1)
...

...
D

(s−1−b)
t (gi1)(P1) . . . D

(s−1−b)
t (gili)(P1)

...
...

gi1(Pn) . . . gili(Pn)
...

...
D

(s−1−b)
t (gi1)(Pn) . . . D

(s−1−b)
t (gili)(Pn)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(3)

and the (s− b)n× (s− b)n matrix
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D(b)
i :=

(
i + b

b

)

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

ri
1

. . .
ri
1

. . .
ri
n

. . .
ri
n

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

, (4)

where every element ri
l is repeated s − b times on the diagonal. Using these

definitions, we can then find the matrix M we are looking for. In other words,
if we define M to be the matrix:⎛

⎜⎜⎜⎜⎜⎜⎝

M(0)
0 D(0)

1 M(1)
1 . . . D(0)

s−1M
(s−1)
s−1 . . . D(0)

λ M(λ)
λ

0 M(0)
1 . . . D(1)

s−2M
(s−2)
s−1 . . . D(1)

λ−1M
(λ−1)
λ

...
. . . . . .

...
...

0 . . . 0 M(0)
s−1 . . . D(s−1)

λ−s+1M
(λ−s+1)
λ

⎞
⎟⎟⎟⎟⎟⎟⎠

, (5)

then we can reformulate equation (1) as matrix equation (2).

Example 2. In this example we show how to calculate the above equations in
case of the Hermitian curve given by the equation xq

2 + x2 = xq+1
1 defined over

Fq2 . The function t = xq2

1 − x1 is a local parameter for all points on the curve
different from T∞. We will describe how to compute D

(a)
t (f) for any function

f ∈ F . In the first place, Hasse derivatives satisfy the Leibniz rule:

D
(a)
t (fg) =

a∑
i=0

D
(i)
t (f)D(a−i)

t (g)

and more general

D
(a)
t (f1 · · · fm) =

∑
i1+···+im=a

D
(i1)
t (f1) · · ·D(im)

t (fm).

Using this and the linearity of Hasse derivatives, we see that in order to describe
them explicitly, it is enough to be able to calculate D

(a)
t (x1) and D

(a)
t (x2) for

all natural numbers a.
We will now show how to calculate D

(a)
t (x1) recursively. We have that D

(0)
t (x1)

= x1. Now suppose that a > 0 and that we know D
(α)
t (x1) for all α between 0 and

a−1. Using the equation t = xq2

1 +x1, we find that D
(a)
t (x1) = D

(a)
t (t)−D

(a)
t (xq2

1 ).
We have that D

(0)
t (t) = t, D

(1)
t (t) = 1 and D

(a)
t (t) = 0 if a > 1. Further using the

general Leibniz rule, we find that D
(a)
t (xq2

1 ) =
∑

i1+···iq2=a Di1
t (x1) · · ·D

(iq2 )

t (x1).
If ij = a for some j, then remaining indices are zero implying that for this choice
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of indices we find the term xa−1
1 D

(a)
t (x1). By varying j between 1 and q2, we see

that there are exactly q2 such terms. Thus these terms do not contribute to the
sum. This means that D

(a)
t (x1) = D

(a)
t (t− xq2

1 ) can be expressed as polynomial
in D

(α)
t (x1) for α varying between 0 and a− 1.

It remains to show how to calculate D
(a)
t (x2) recursively. In the first place D

(0)
t

(x2) = x2 and since xq
2 + x2 = xq+1

1 , we also have that D
(a)
t (x2) = D

(a)
t (xq+1

1 )−
D

(a)
t (xq

2). We already know how to calculate D
(a)
t (xq+1

1 ) recursively and similarly
as above we can express D

(a)
t (xq

2) as a polynomial in D
(α)
t (x2) with α between 0

and a− 1. For future use, we state some explicit results for q = 2:

a 0 1 2 3 4 5

D
(a)
t (x1) x1 1 0 0 1 0

D
(a)
t (x2) x2 x2

1 x1 + x4
1 1 x8

1 0

Before continuing our discussion of equation (1), we will establish some facts
on the matrices M(0)

i . We will think about them as generator matrices of certain
codes that we will define now.

Definition 1. Let s be a natural number, D = P1 + · · ·+ Pn as before and A be
a divisor with support disjoint from supp D, but of arbitrary degree. Further, let
t ∈ F be a local parameter for all P ∈ supp D simultaneously. We define

Ev(s)
P : L(A) → Fs

f �→ (f(P ), D(1)
t (f)(P ), . . . , D(s−1)

t (f)(P ))

Ev(s)
D : L(A) → Fsn

f �→ (Ev(s)
P1

(f), . . . , Ev(s)
Pn

(f))

and
C

(s)
L (D, A) := Ev(s)

D (L(A)).

Note that if s > 1, the map Ev(s)
P depends on the choice of the local parameter

t. The point of the above definition is that the columns occurring in the matrix
M(0)

i are codewords in the code C
(s−i)
L (D, A− iG). Moreover, we have that

rankM(0)
i = dimC

(s−i)
L (A− iG). (6)

In order to define the analogue of the code CΩ(D, A), we consider a differential
ω ∈ Ω(−sD+A). Locally at a point P ∈ supp D, one can then write ω = (βst

−s+
· · ·+ β1t

−1 + · · · ) dt. We can calculate βi using residues, since βi = resP (ti−1ω).
This motivates the following definition:
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Definition 2. Let s, D, A and t be as in Definition 1. We define

Res(s)P : Ω(−sD + A) → Fs

ω �→ (resP (ω), resP (tω), . . . , resP (ts−1ω)),

Res(s)D : Ω(−sD + A) → Fsn

ω �→ (Res(s)P1
(ω), . . . , Res(s)Pn

(ω))
and

C
(s)
Ω (D, A) := Res(s)D (Ω(−sD + A)).

If s = 1 it is well known that C
(s)
L (D, A) and C

(s)
Ω (D, A) are dual to each other.

We will now show that this also holds for arbitrary s. It is important that the
choice of local parameter t is fixed when defining these codes.

Proposition 1. We have that

1. dimC
(s)
L (D, A) = l(A)− l(−sD + A),

2. C
(s)
Ω (D, A) = C

(s)
L (D, A)⊥.

Proof. Let g ∈ L(A). We have that Ev(s)
D (g) = (0, . . . , 0) if and only if g has

a zero of order at least s in every P ∈ supp D. This implies that the kernel of
Ev(s)

D is L(−sD + A). This proves the first statement.
Now we prove the second statement. Let ω ∈ Ω(−sD + A) and g ∈ L(A).

Locally at a P ∈ supp D, we can write ω = (βst
−s + · · · + β1t

−1 + · · · ) dt

and g = α0 + α1t + · · · + αs−1t
s−1 + · · · . Then Res(s)P (ω) = (β1, . . . , βs) and

Ev(s)
P (g) = (α0, . . . , αs−1). The inner product 〈Res(s)P (ω), Ev(s)

P (g)〉 is exactly the
coefficient of t−1 in the product gω. Therefore we have that

〈Res(s)P (ω), Ev(s)
P (g)〉 = resP (gω).

Also note that gω ∈ Ω(−sD). All in all, we can deduce that

〈Res(s)D (ω), Ev(s)
D (g)〉 =

n∑
i=0

resPi(gω) = 0.

In the last equality, we used the residue theorem. This implies that C
(s)
Ω (D, A) ⊂

C
(s)
L (D, A)⊥.
The proposition now follows once we prove that

dimC
(s)
Ω (D, A) + dimC

(s)
L (D, A) = sn.

However, similarly to the first statement, one can prove that dim C
(s)
Ω (D, A) =

dimΩ(−sD + A)− dimΩ(A). Therefore we have that

dimC
(s)
L (D, A) + dim C

(s)
Ω (D, A)= l(A)− l(−sD + A)+

dimΩ(−sD + A)− dimΩ(A)=deg(A)− deg(−sD + A) = sn.

We used Riemann-Roch’s theorem to obtain the second equality.
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Recall that li = l(A− iG). For convenience we also define

mi := l(−(s− i)D + A− iG).

Combining the above proposition with equation (6), we find that

rankM(0)
i = li −mi. (7)

Note that this implies that dimC
(s)
L (D, A) = l(A) if deg A < sn. This is always

the case in the setup of the list decoding algorithm.

Definition 3. Let A and G be divisors as in the list decoding setup. Let b be
an integer between 0 and s − 1 and ω1, . . . , ω(s−i)n differential forms such that
Res(s−b)

D (ωi) for 1 ≤ i ≤ dim C
(s−b)
Ω (D, A− bG) is a basis of C

(s−b)
Ω (D, A− bG)

and Res(s−b)
D (ω1), . . . , Res(s−b)

D (ω(s−b)n) is a basis of F(s−b)n. Then we define
the (s− b)n× (s− b)n matrix.

Hb :=

⎛
⎜⎜⎝

Res(s−b)
D (ω1)

...
Res(s−b)

D (ω(s−b)n)

⎞
⎟⎟⎠

and for 0 ≤ b ≤ s− 1 and b ≤ i ≤ λ, the (s− b)n× li matrix

S(i−b)
i := Hb D(b)

i−b M(i−b)
i .

Note that the matrices Hb are regular. We now obtain the following proposition.

Proposition 2. The set of equations in (1) is row equivalent to the system⎛
⎜⎜⎜⎜⎜⎜⎝

S(0)
0 S(1)

1 . . . S(s−1)
s−1 . . . S(λ)

λ

0 S(0)
1 . . . S(s−2)

s−1 . . . S(λ−1)
λ

...
. . . . . .

...
...

0 . . . 0 S(0)
s−1 . . . S(λ−s+1)

λ

⎞
⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎝

q0

q1

...

qλ

⎞
⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎝

0

0
...

0

⎞
⎟⎟⎟⎟⎟⎟⎠

. (8)

Proof. The proposition follows after multiplying the b-th row of matrices in
equation (5) with Hb.

The matrices S(0)
0 , . . . , S(0)

s−1 are independent of the received word r and by
equation (7) we have

rankS(0)
i = li −mi. (9)

If li < (s−i)n, this reduces to rankS(0)
i = li. Further, we have that if li < (s−i)n,

then S(0)
i can be written in the form

S(0)
i =

(
0

B(0)
i

)
,
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where 0 denotes the (s − i)n − li × li zero matrix. The li × li matrix B(0)
i is

regular, meaning that with Gaussian elimination, we can eliminate the variables
qi1, . . . , qili in all rows different from those of B(0)

i . For i = 0 the situation is
very simple, since the only rows in system (8) in which the variables q01, . . . ,
q0l0 occur, are the rows coming from B(0)

0 . If li ≥ (s− i)n, then we can eliminate
rankS(0)

i = li −mi variables among qi1, . . . , qili .
All in all, we can simplify system (8) by eliminating

∑s
i=0(li −mi) variables.

This means that the remaining

s∑
i=0

mi +
λ∑

i=s+1

li

variables can be found by solving

s∑
i=0

( (s− i)n− li + mi )

linear equations. This gives an in general significant reduction of the size of the
original system.

4 Example

In this section we give a continuation of Example 1. In the formulation from
Section 2, we needed to solve a linear system of 168 equations 171 variables in
order to find an interpolation polynomial Q(y). We have just seen however that
we can reduce the size of the system. First we calculate the rank of the matrices
S(0)

i and find:

i 0 1 2 3 4 5

rankS
(0)
i 35 31 27 23 16 8

This means that we can eliminate 140 variables and equations thereby reducing
the original system to a system of 28 equations in 31 variables. We can eliminate
all 116 variables qij with 0 ≤ i ≤ 3 and 1 ≤ j ≤ li, since for i ≤ 3 we have that
li < (s− i)n. For i = 4 and i = 5, the situation is more complicated, but all we
need to do is to compute the matrices S(0)

4 and S(0)
5 explicitly. In order to do

this, we need to choose differentials as in Definition 3. Given a b between 0 and
s, we can choose a basis for Ω(−(s− b)D + A− bG) with the desired properties
as follows (recall t = x1 + x4

1):

ωi =
{

fi dt/ts−b if 1 ≤ i < (s − b)n,

f(s−b)n+1 dt/ts−b if i = (s − b)n.

Using this choice of differential, we can compute all matrices S(0)
i explicitly.

By our choice of bases, they have more structure than we indicated before. In
the first place we find that (B(0)

i )pq = 0 if p + q < li + 1 and (B(0)
i )pq = 1
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if p + q = li + 1. This means that the Gaussian elimination steps needed to
eliminate the qij (with 0 ≤ i ≤ 3 and 1 ≤ j ≤ li) are straightforward to do. We
also find that the matrix S(0)

4 is equal to

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0
0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0
0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1
0 0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0
0 0 0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0
0 0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0
0 0 0 1 0 0 0 0 0 1 0 0 0 0 0 0 0 0 0
0 0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0
0 1 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Therefore we can eliminate the 16 variables q4j with 1 ≤ j ≤ 15 and j = 17. We
also find that

S(0)
5 =

⎛
⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 0 0 1 0 0 0 0 0 0
0 0 0 0 0 0 1 0 0 1 0 0 0 0 0
0 0 0 0 0 1 0 0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 1 0 0 0 0 0 1 0
0 0 0 1 0 0 1 0 0 0 0 0 1 0 0
0 0 1 0 0 0 0 0 0 0 0 1 0 0 0
0 1 0 0 1 0 0 0 0 0 1 0 0 1 0
1 0 0 0 0 0 0 0 1 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠ ,

enabling us to eliminate the 8 variables q5j with 1 ≤ j ≤ 7 and j = 9. What
remains is to calculate the remaining 31 variables. Doing the elimination explic-
itly, we find that the vector consisting of these remaining 31 variables has to be
in the kernel of the 28× 31 matrix:

⎛
⎝ A1 A2

A3 A4

⎞
⎠ ,

with

A1 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 1 α α α 0 0 α2 1 0 1 α2 1
0 0 α2 α 1 α2 α2 0 α α2 0 α2 α2 0 α
0 α2 0 α2 0 1 1 α 1 α 0 α2 0 1 α2

0 0 0 α2 α 1 α 1 1 α2 α2 0 α2 α α
α2 0 α2 1 0 α α 1 α2 α α2 1 α2 0 0
0 α2 α 0 α2 0 α2 1 α2 1 0 0 0 1 α2

0 α 0 α 1 1 0 α2 α α2 0 0 0 α2 0
α2 0 0 1 0 α2 0 1 α 0 1 0 α 1 1
α 0 0 α α2 α2 1 0 1 α 0 0 0 0 0
0 α α2 α2 α2 α2 α α 1 α2 0 α 0 α2 0
0 α2 0 0 0 0 α2 α2 0 α2 α 0 α 1 1
0 0 α α2 1 α2 0 1 α2 0 0 α 0 0 α
α2 α 0 0 α2 1 α2 1 α 1 0 α2 0 α α2

0 0 0 0 0 0 0 α2 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,
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A2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 1 0 α2 α2 0 α α2 α α2 α2 α α 0 0 0
1 0 0 α α2 1 α2 α2 1 α 1 1 α2 0 0 0
0 0 α 0 1 α α 0 1 1 0 α2 α 0 0 0
0 α 1 α2 α α α2 1 α α 1 0 1 0 0 0
α 0 1 α 1 0 1 α α2 0 0 α α2 0 0 0
α 0 α 0 α 0 1 0 α 0 1 1 1 0 0 α
0 0 0 0 α 0 α 0 α α α α2 0 0 α 0
α α2 α α 0 α2 α α2 α2 α α2 α α 0 0 α
α2 0 α2 0 α2 α2 0 α2 1 α α2 α 1 α α 0
1 0 α2 0 1 1 1 α α α 1 1 α2 0 α α2

0 α2 0 α α 1 α2 α 1 α2 1 α2 1 α α2 α
0 0 α 0 0 1 α α α2 α α α 0 0 α α
0 0 α 0 0 α 0 α2 α2 0 α2 α α2 α2 α 0
0 0 0 0 0 0 0 1 α 0 0 α2 1 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

A3 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 α2 0 0 0 α 0 0 0 0 0
0 0 0 0 α2 0 0 0 α 0 0 0 0 0 0
0 0 0 0 0 0 0 α 0 α2 0 0 0 0 0
0 0 0 α2 0 0 α 0 α2 α 0 0 0 0 0
0 0 0 0 α2 α 0 α2 α α2 0 0 0 0 0
0 0 0 0 α 0 α2 0 α2 0 0 0 0 0 0
0 0 0 α2 0 α2 α α2 0 α 0 0 0 0 0
0 0 0 α 0 α α2 0 α 0 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 α2

0 0 0 0 0 0 0 0 0 0 0 0 α2 0 0
0 0 0 0 0 0 0 0 0 0 0 α2 0 0 α2

0 0 0 0 0 0 0 0 0 0 0 0 0 0 α
0 0 0 0 0 0 0 0 0 0 α2 0 α2 α 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

and

A4 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 0 0 0 0 1 0 α2 α α2 α α 0 0 0
0 0 0 0 0 0 α α2 0 α2 α α α 0 0 0
0 0 0 0 0 0 0 α2 1 1 α 1 0 0 0 0
0 0 0 0 0 0 α2 α α2 1 α2 0 α2 0 0 0
0 0 0 0 0 0 1 α 0 1 α2 1 α2 0 0 0
0 0 0 0 0 0 1 0 α 0 0 α2 0 0 0 0
0 0 0 0 0 0 α α 0 α2 α 1 α 0 0 0
0 0 0 0 0 0 1 α2 1 α2 α 0 α 0 0 0
0 0 α2 α 0 0 α α2 α α2 1 0 α2 0 0 0
α2 α 0 0 α α2 α2 α2 α 1 1 α2 α 0 0 0
α 0 0 0 α2 0 α α 1 α2 α α2 α 0 0 0
0 α2 α α2 0 α α2 α2 α 1 α2 1 α2 0 0 0
0 α α2 0 α 0 α α 1 α2 α α2 α 0 0 0
0 0 0 0 0 0 0 0 0 0 α2 α2 α 0 0 0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

This matrix is much easier to handle than the original 168 × 171 matrix. Its
kernel is 5-dimensional and one of the solutions is given by (only nonzero values
are given, the rest of the 31 variables are zero):

q58 q510 q511 q61 q62 q63 q64 q65 q66 q67 q71 q81 q82

1 α2 α 1 α2 α α2 α2 1 α2 1 α2 α

Setting in these 31 values in system (8), we can then calculate the remaining 140
variables immediately and find the interpolation polynomial Q(y) mentioned in
Example 1.
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How to Know if a Linear Code Is a Group

Code?�
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Abstract. We present an intrinsecal characterization of when a linear
code C is a (left) group code, i.e. the ambient space can be identified
with a group algebra in which the standard basis is the group basis such
that C is a (left) ideal in this group algebra. As application we obtain a
class containing properly the class of metacyclic groups such that every
group code is an abelian group code. We also use the characterization to
describe all the possible group structures on some classes of generalized
Reed-Solomon codes.

1 Introduction

In this note F = Fq denotes the field with q elements. We consider F as the
alphabet of linear codes and Fn, the n-dimensional vector space, as the ambient
space. The standard basis of Fn is denoted by E = {e1, . . . , en}. For a group G,
we denote by FG the group algebra over G with coefficients in F.

Recall that a linear code C ⊆ Fn is said to be cyclic if and only if C is closed
under cyclic permutations, that is, (x1, . . . , xn) ∈ C implies (x2, . . . , xn, x1) ∈ C.
For Cn = 〈g〉, the cyclic group of order n, the bijection φ : E → Cn given by
φ(ei) = gi−1 extends to an isomorphism of vector spaces φ : Fn → FCn and the
cyclic codes in Fn are the subsets C of Fn such that φ(C) is an ideal of FCn.

More generally, if G is a group of order n and C ⊆ Fn is a linear code then
we say that C is a left G-code (respectively, a right G-code; a G-code) if there
is a bijection φ : E → G such that the linear extension of φ to an isomorphism
φ : Fn → FG maps C to a left ideal (respectively, a right ideal; a two-sided
ideal) of FG. A left group code (respectively, group code) is a linear code which
is a left G-code (respectively, a G-code) for some group G. A (left) cyclic group
code (respectively, abelian group code, solvable group code, etc.) is a linear code
which is (left) G-code for some cyclic group (respectively, abelian group, solvable
group, etc.). In general, if G is a class of groups then we say that a linear code
is a (left) G group code if and only if C is a (left) G-code for some G in G.

Note that the cyclic codes of order n are cyclic group codes. However, not every
cyclic group code is a cyclic code. For example, the linear code {(a, a, b, b) : a, b ∈
F} is not a cyclic code but it is a G-code via the map φ : {e1, . . . , e4} → 〈g〉,
given by φ(e1) = 1, φ(e2) = g2, φ(e3) = g and φ(e4) = g3, where C4 = 〈g〉
� Research supported by D.G.I. of Spain and Fundación Séneca of Murcia.

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 33–36, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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is a cyclic group of order 4. If one fixes a bijection φ : E → G to induce an
isomorphism φ : Fn → FG then the left G-codes are precisely those codes of Fn

which are permutation equivalent to codes of the form φ−1(I) for I running on
the left ideals of FG. In particular, the cyclic group codes are the codes which
are permutation equivalent to cyclic codes.

In this note we communicate a criterion to decide when a linear code is a
group code in terms of its intrinsical properties in the ambient space, which does
not assume an “a priori” group algebra structure on the ambient space. We also
include some applications. An extended version of this note with proofs will be
disposed soon [BRS].

2 Main Result

Let Sn denote the group of permutations on n symbols, that is the group of
bijections of Nn = {1, . . . , n} onto itself. Recall that a subgroup G of Sn is
regular if and only if it is transitive and has order n. We consider Sn acting by
linear transformations on Fn via the following rule:

σ(ei) = eσ(i), (σ ∈ Sn, i ∈ Nn).

The group of permutation automorphisms of a linear code C is

PAut(C) = {σ ∈ Sn : σ(C) = C}.

For a subgroup H of a group G, let CenG(H) denote the centralizer of H in G.
The following theorem characterizes (left) group codes.

Theorem 1. Let C be a linear code of length n over a field F and G a finite
group of order n.

1. C is a left G-code if and only if G is isomorphic to a transitive subgroup of
Sn contained in PAut(C).

2. C is a G-code if and only if G is isomorphic to a transitive subgroup H of
Sn such that H ∪CenSn(H) ⊆ PAut(C).

Corollary 2. Let C be a linear code of length n over a field and let G be a class
of groups.

1. C is a left G group code if and only if PAut(C) contains a regular subgroup
of Sn in G.

2. C is a G group code if and only if PAut(C) contains a regular subgroup H
of Sn in G such that CenSn(H) ⊆ PAut(C).

Remark 3. Theorem 1 should be compare with Proposition III.1 in [PR] which
states that a non-necessarily linear binary code C is propelinear if Iso(C), the
group of affine bijections of the ambient space leaving C invariant, contains a
regular subgroup acting transitively on C. A code C of length n is propelinear if
for every x ∈ C there is a permutation πx ∈ Sn such that the map y �→ x+πx(y)
belongs to Iso(C) and πx ◦ πy = πx+πx(y) for every x, y ∈ C.
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3 Application I: Group Codes Versus Abelian Group
Codes

Most of the studies on group codes in the literature consider either cyclic codes
or abelian group codes. Recently some authors have payed attention to arbitrary
group codes (see [KS] for a survey on group codes). Sabin and Lomonaco [EL]
proved that if C is a G-code for a split metacyclic group G (i.e. G is a semidirect
product of cyclic groups) then C is an abelian group code. As a first application
of Theorem 1, we extend this result to a wider class of groups which includes all
metacyclic groups. Recall that a group G is metacyclic if it has a normal cyclic
subgroup A such that G/A is cyclic.

Theorem 4. Let G be a group. Assume that G has two abelian subgroups A
and B such that every element g ∈ G can be written as g = ab, with a ∈ A and
b ∈ B. If C is a G-code then C is an abelian group code.

Corollary 5. If C is a metacyclic group code then C is an abelian group code.

Theorem 4 provides a family of groups G such that every two-sided G code is
also an abelian group code. We do not know any example of a group code which
is not an abelian group code. For left group codes the situation is completely
different. Using a counting argument one can prove that for every non-abelian
group G and every prime p not dividing the order of G there is a left G-code
over some field of characteristic p which is not an abelian group code. This proof
is not constructive. Alternatively the following provides a concrete example.

Example 6. Let F = F11 be the field with 11 elements. Every 2-dimensional
cyclic group code of length 6 over F is permutation equivalent to one of the
following codes:

C1 = {(λ, μ, μ− λ,−λ,−μ, λ− μ) | λ, μ ∈ F},
C2 = {(λ, μ,−μ− λ, λ, μ,−μ− λ) | λ, μ ∈ F},
C3 = {(λ, μ, λ, μ, λ, μ) | λ, μ ∈ F}.

Using this one can easily check that the subspace C of F6 generated by u =
(2, 5,−7, 2,−7, 5) and v = (4,−3,−1,−4, 1, 3) is not an abelian group code. How-
ever C is a left S3-code. Indeed, A = (1, 2, 3)(4, 5, 6) and B = (1, 4)(2, 6)(3, 5)
belong to PAut(C), since A(u) = 5u + 4v, B(u) = u, A(v) = 5(v − u) and
B(v) = −v. Moreover 〈A, B〉 is a regular subgroup of S6 isomorphic to S3 and
the claim follows from Theorem 1.

4 Application II: Cauchy Codes

Another applications of Theorem 1 involves the family of Cauchy codes (see
[D] or [H] for details). Let F denote the projective line over F. We evaluate a
homogenous polynomial F ∈ F[X, Y ] on an element z ∈ F by setting F (z) =
F (ϕ(z)), where ϕ(x) = (x, 1) if x ∈ F and ϕ(x) = (1, 0) if x = ∞. Let 1 ≤ k < n,
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α = (α1, . . . , αn) ∈ Fn with αi �= αj for i �= j and v = (v1, . . . , vn) with
0 �= vi ∈ F for every i. Then the Cauchy codes of length n, dimension k, location
vector α and scaling vector v is the following linear code:

Ck(α, v) = {(v1P (α1), . . . , vnP (αn)) : P ∈ F[X, Y ]k−1} ,

where F[X, Y ]k−1 denotes the set of polynomials in two variables which are
homogeneous of degree k − 1. Every Cauchy code is MDS and its dual is an-
other Cauchy code. Examples of Cauchy codes are the generalized Reed-Solomon
codes.

Using Theorem 1 we obtain criteria to decide when Cauchy codes of some
lengths are left group codes. For example, it is well known that the extended
Reed-Solomon codes are q-ary elementary abelian group codes (see e.g. [LM]).
Next theorem shows that these are the only left group q-ary Cauchy codes of
length q and this is also the only possible left group code structure on extended
Reed-Solomon codes. (Note that the assumption 2 ≤ k ≤ q − 2 excludes one-
dimensional codes and its dual codes. However this case can be easily treated
separately using Theorem 1.)

Theorem 7. Let C be a q-ary Cauchy code of length q and dimension 2 ≤ k ≤
q − 2 and let G be a group of order q. Then C is a left G-code if and only if it
is permutation equivalent to the parity check extended Reed-Solomon code and G
is p-elementary abelian.

We also use Theorem 1 to give a complete description of the group code structure
of all the q-ary Cauchy codes of length q − 1 or q − 2. In particular, we prove
that if C is a q-ary Cauchy G-code of length q − 1 then either G is cyclic or q
is odd and G is a dihedral group and describe all the Cauchy codes of this type
with all its possible group code structures.

References
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Abstract. Given a set C of binary n-tuples and c ∈ C, how many bits
of c suffice to distinguish it from the other elements in C ? We shed
new light on this old combinatorial problem and improve on previously
known bounds.

1 Introduction

Let C ⊂ {0, 1}n be a set of distinct binary vectors that we will call a code, and
denote by [n] = {1, 2, ...n} the set of coordinate positions. It is standard in coding
theory to ask for codes (or sets) C such that every codeword c ∈ C is as different
as possible from all the other codewords. The most usual interpretation of this
is that every codeword c has a large Hamming distance to all other codewords,
and the associated combinatorial question is to determine the maximum size
of a code that has a given minimal Hamming distance d. The point of view of
the present paper is to consider that “a codeword c is as different as possible
from all the other codewords” means that there exists a small subset W ⊂ [n] of
coordinates such that c differs from every other codeword in W . Put differently,
it is possible to single out c from all the other codewords by focusing attention
on a small subset of coordinates. More precisely, for x ∈ {0, 1}n, and W ⊂ [n]
let us define the projection πW

πW : {0, 1}[n] → {0, 1}W

x �→ (xi)i∈W

and let us say that W is a witness set (or a witness for short) for c ∈ C if
πW (c) �= πW (c′) for every c′ ∈ C, c �= c′. Codes for which every codeword has a
small witness set arise in a variety of contexts, in particular in machine learning
theory [1,3,4] where a witness set is also called a specifying set or a discriminant:
see [5, Ch. 12] for a short survey of known results and also [2] and references
therein for a more recent discussion of this topic and some variations.
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Let us now say that a code has the w-witness property, or is a w-witness code,
if every one of its codewords has a witness set of size w. Our concern is to study
the maximum possible cardinality f(n, w) of a w-witness code of length n. We
shall give improved upper and lower bounds on f(n, w) that almost meet.

The paper is organised as follows. Section 2 gives some easy facts for reference.
Section 3 is devoted to upper bounds on f(n, w) and introduces our main result,
namely Theorem 2. Section 4 is devoted to constant weight w-witness codes, and
we derive precise values of the cardinality of optimal codes. Section 5 studies
mean values for the number of witness sets of a codeword and the number of
codewords that have a given witness set. Section 6 is devoted to constructions
of large w-witness codes, sometimes giving improved lower values of f(n, w).
Finally, Section 7 concludes with some open problems.

2 Easy and Known Facts

Let us start by mentioning two self-evident facts

– If C is a w-witness code, so is any translate C + x,
– f(n, w) is an increasing function of n and w.

Continue with the following example. Let C be the set of all n vectors of length
n and weight 1. Then every codeword of C has a witness of size 1, namely its
support. Note the dramatic change for the slightly different code C ∪ {0}. Now
the all-zero vector 0 has no witness set of size less than n. Bondy [3] shows
however that if |C| ≤ n, then C is a w-witness code with w ≤ |C| − 1 and
furthermore C is a uniform w-witness code, meaning that there exists a single
subset of [n] of size w that is a witness set for all codewords.

We clearly have the upper bound |C| ≤ 2w for uniform w-witness codes. For
ordinary w-witness codes however, the best known upper bound is, [5, Proposi-
tion 12.2],

f(n, w) ≤ 2w

(
n

w

)
. (1)

The proof is simple and consists in applying the pigeon-hole principle. A subset
of [n] can be a witness set for at most 2w codewords and there are at most

(
n
w

)
witness sets.

We also have the following lower bound on f(n, w), based on a trivial con-
struction of a w-witness code.

Proposition 1. We have: f(n, w) ≥
(

n
w

)
.

Proof. Let C =
(
[n]
w

)
be the set of all vectors of weight w. Notice that for all

c ∈ C, W (c) = support(c) is a witness set of c.

Note that the problem is essentially solved for w ≥ n/2; since f(n, w) is increas-
ing with w, we then have:

2n ≥ f(n, w) ≥ f(n, n/2) ≥
(

n
n/2

)
≥ 2n/(2n)1/2.
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We shall therefore focus in the sequel on the case w ≤ n/2.
In the next section we improve the upper bound (1) to a quantity that comes

close to the lower bound of Proposition 1.

3 An Improved Upper Bound

The key result is the following.

Theorem 1. Let g(n, w) = f(n, w)/
(

n
w

)
. Then, for fixed w, g(n, w) is a decreas-

ing function of n. That is:

n ≥ v ≥ w ⇒ g(n, w) ≤ g(v, w).

Proof. Let C be a binary code of length n having the w-witness property, with
maximal cardinality |C| = f(n, w). Fix a choice function φ : C →

(
[n]
w

)
such

that for any c ∈ C, φ(c) is a witness for c. For any V ∈
(
[n]
v

)
, denote by CV the

subset of C formed by the c satisfying φ(c) ⊂ V . Remark that the projection πV

is injective on CV , since each element of CV has a witness in V . Then πV (CV )
also has the w-witness property.

Remark now that if V is uniformly distributed in
(
[n]
v

)
and W is uniformly

distributed in
(
[n]
w

)
and independent from V , then for any function ψ :

(
[n]
w

)
→ R

one has
EW (ψ(W )) = EV (EW (ψ(W ) |W ⊂ V )), (2)

where we denote by EW (ψ(W )) the mean value (or expectation) of ψ(W ) as W

varies in
(
[n]
w

)
, and so on.

We apply this with ψ(W ) = |φ−1(W )| to find

g(n, w) =
(

n

w

)−1

|C| =
(

n

w

)−1∑
W∈([n]

w )
|φ−1(W )|

= EW ( |φ−1(W )| )
= EV (EW ( |φ−1(W )| |W ⊂ V ))

= EV

((
v

w

)−1∑
W∈(V

w)
|φ−1(W )|

)

= EV

((
v

w

)−1

|CV |
)

= EV

((
v

w

)−1

|πV (CV )|
)

≤ g(v, w)

the last inequality because πV (CV ) is a binary code of length v having the w-
witness property.
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Remark: It would be interesting to try to improve Theorem 1 using some unex-
ploited aspects of the above proof, such as the fact that the choice function φ may
be non-unique, or the fact that the last inequality not only holds in mean value,
but for all V . For instance, suppose there is a codeword c ∈ C (with C optimal as
in the proof) that admits two distinct witnesses W and W ′, with W �⊂ W ′. Let
φ be a choice function with φ(c) = W , and let φ′ be the choice function that co-
incides everywhere with φ, except for φ′(c) = W ′. Let V contain W ′ but not W .
If we denote by C′

V the subcode obtained as CV but using φ′ as choice function,
then C′

V = CV ∪ {c} (disjoint union), so |πV (CV )| = |πV (C′
V )| − 1 < f(v, w),

and g(n, w) < g(v, w).

Theorem 1 has a number of consequences: the following is straightforward.

Corollary 1. For fixed w, the limit

lim
n→∞ g(n, w) =

f(n, w)(
n
w

)
exists.

The following theorem gives an improved upper bound on f(n, w).

Theorem 2. For w ≤ n/2, we have the upper bound:

f(n, w) ≤ 2w1/2

(
n

w

)
.

Proof. Choose v = 2w and use f(v, w) ≤ 2v; then f(n, w) ≤
(

n
w

)
f(2w, w)/

(
2w
w

)
and the result follows by Stirling’s approximation.

Set w = ωn and denote by h(x) the binary entropy function

h(x) = −x log2 x− (1− x) log2(1 − x).

Theorem 2 together with Proposition 1 yield:

Corollary 2. We have

limn→∞ 1
n log2 f(n, ωn) = h(ω) for 0 ≤ ω ≤ 1/2

= 1 for 1/2 ≤ ω ≤ 1.

4 Constant-Weight Codes

Denote now by f(n, w, k) the maximal size of a w-witness code with codewords
of weight k. The following result is proved using a folklore method usually at-
tributed to Bassalygo and Elias, valid when the required property is invariant
under some group operation.
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Proposition 2. We have:

max
k

f(n, w, k) ≤ f(n, w) ≤ min
k

f(n, w, k)2n(
n
k

) .

Proof. The lower bound is trivial.
For the upper bound, fix k, pick an optimal w-witness code C and consider its

2n translates by all possible vectors. Every n-tuple, in particular those of weight
k, occurs exactly |C| times in the union of the translates; hence there exists a
translate (also an optimal w-witness code of size f(n, w) - see the remark at
the beginning of Section 2) containing at least the average number |C|

(
n
k

)
2−n of

vectors of weight k. Since k was arbitrary, the result follows.

We now deduce from the previous proposition the exact value of the function
f(n, w, k) in some cases.

Corollary 3. For constant-weight codes we have:

– If k ≤ w ≤ n/2 then f(n, w, k) =
(
n
k

)
and an optimal code is given by Sk(0),

the Hamming sphere of radius k centered on 0.
– If n− k ≤ w ≤ n/2, then f(n, w, n− k) =

(
n
k

)
and an optimal code is given

by the sphere Sk(1).

Proof. If k ≤ w ≤ n/2, we have the following series of inequalities:(
n

k

)
≤ f(n, k, k) ≤ f(n, w, k) ≤

(
n

k

)
.

If n− k ≤ w ≤ n/2, perform wordwise complementation.

5 Some Mean Values

Let C be a binary code of length n (not necessarily having the w-witness prop-
erty). Let

WC,w : C → 2([n]
w ), WC,w(c) = {W ∈

(
[n]
w

)
: W is a witness for c},

and symmetrically,

CC,w :
(

[n]
w

)
→ 2C , CC,w(W ) = {c ∈ C : W is a witness for c}.

Remark that if C′ ⊂ C is a subcode, then WC′,w(c) ⊃ WC,w(c) for any c ∈ C′,
while CC′,w(W ) ⊃ (C′ ∩ CC,w(W )) for any W ∈

(
[n]
w

)
.

Lemma 1. With these notations, the mean values of |WC,w| and |CC,w| are
related by

|C|Ec(|WC,w(c)|) =
(

n

w

)
EW (|CC,w(W )|),

or equivalently
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|C|(
n
w

) =
EW (|CC,w(W )|)
Ec(|WC,w(c)|) .

Proof. Double count the set
{
(W, c) ∈

(
[n]
w

)
× C : W is a witness for c

}
.

Now let γ(C, w) = EW (|CC,w(W )|) and let γ+(n, w) be the maximum possible
value of γ(C, w) for C a binary code of length n, and γ++(n, w) be the maximum
possible value of γ(C, w) for C a binary code of length n having the w-witness
property.

Lemma 2. With these notations, one has γ+(n, w) = γ++(n, w).

Proof. By construction γ+(n, w) ≥ γ++(n, w). On the other hand, let C be
a binary code of length n with γ(C, w) = γ+(n, w), and let then C′ be the
subcode of C formed by the c having at least one witness of size w, i.e. C′ =⋃

W∈([n]
w ) CC,w(W ). Then C′ has the w-witness property, and

γ++(n, w) ≥ γ(C′, w) ≥ γ(C, w) = γ+(n, w).

The technique of the proof of Proposition 1 immediately adapts to give:

Proposition 3. With these notations, w being fixed, γ+(n, w) is a decreasing
function of n. That is:

n ≥ v ≥ w ⇒ γ+(n, w) ≤ γ+(v, w).

Proof. Let C be a binary code of length n with γ(C, w) = γ+(n, w). For V ∈(
[n]
v

)
, denote by CV the subset of C formed by the c having at least one witness of

size w included in V , i.e. C′
V =

⋃
W∈(V

w) CC,w(W ). Then C′
V has the w-witness

property, CC,w(W ) ⊂ CC′
V ,w(W ) for any W ⊂ V , and πV is injective on C′

V .
Using this and (2), one gets:

γ+(n, w) = EW (|CC,w(W )|)
= EV (EW ( |CC,w(W )| |W ⊂ V ))
≤ EV (EW ( |CC′

V ,w(W )| |W ⊂ V ))

= EV (EW ( |CπV (C′
V ),w(W )| |W ⊂ V ))

= EV (γ(πV (C′
V ), w))

≤ γ+(v, w).

6 Constructions

6.1 A Generic Construction

Let F ⊂
(

[n]
≤w

)
be a set of subsets of {1, . . . , n} all having cardinality at most w.

Let CF ⊂ {0, 1}n be the set of words having support included in one and only
one W ∈ F . Then:
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Proposition 4. With these notations, CF has the w-witness property.

Proof. For each c ∈ CF , let Wc be the unique W ∈ F containing the support of
c. Then Wc is a witness for c.

Example 1. For F =
(
[n]
w

)
we find CF = Sw(0), and

f(n, w) ≥ |CF | =
(

n

w

)
.

Example 1’. Suppose w ≥ n/2. Then for F =
( [n]
n/2

)
we find CF = Sn/2(0), and

f(n, w) ≥ |CF | =
(

n

n/2

)

(where for ease of notation we write n/2 instead of �n/2�).

Example 2. For F = {W} with |W | ≤ w we find CF = {0, 1}W (where we see
{0, 1}W as a subset of {0, 1}n by extension by 0 on the other coordinates), and

f(n, w) ≥ |CF | = 2w.

Exemple 3. Let F be the set of (supports of) words of a code with constant
weight w and minimal distance d (one can suppose d even). Then for all distinct
W, W ′ ∈ F one has |W ∩W ′| ≤ w−d/2, so for all W ∈ F , the code CF contains
all words of weight larger than w − d/2 supported in W . This implies:

Corollary 4. For all d one has

f(n, w) ≥ A(n, d, w)B(w, d/2 − 1)

where:

– A(n, d, w) is the maximal cardinality of a code of length n with minimal
distance at least d and constant weight w

– B(w, r) = Σ1≤i≤r

(
w
i

)
is the cardinality of the ball of radius r in {0, 1}w.

For d = 2, this construction gives the sphere again. For d = 4, this gives
f(n, w) ≥ (1 + w)A(n, d, w). We consider the following special values:

– n = 4, d = 4, w = 2: A(4, 4, 2) = 2
– n = 8, d = 4, w = 4: A(8, 4, 4) = 14
– n = 12, d = 4, w = 6: A(12, 4, 6) = 132

the last two being obtained with F the Steiner system S(3, 4, 8) and S(5, 6, 12)
respectively.

The corresponding codes CF have same cardinality as the sphere (2× 3 = 6,
14 × 5 = 70 and 132 × 7 = 924 respectively), but they are not translates of
a sphere. Indeed, when C is a (translate of a) sphere with w = n/2, one has
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CC,w(W ) = 2 for any window W ∈
(
[n]
w

)
. On the other hand, for C = CF as

above, one has by construction CC,w(W ) = w + 1 for W ∈ F .

6.2 Another Construction

Let D ⊂ {0, 1}w be a binary (non-linear) code of length w > n/2 and minimal
weight at least 2w − n.

Let C1 be the code of length n obtained by taking all words of length w that
do not belong to D, and completing them with 0 on the last n−w coordinates.
Thus |C1| = 2w − |D|.

Let C2 be the code of length n formed by the words c of weight exactly w,
and such that the projection of c on the first w coordinates belongs to D. Thus
if nk is the number of codewords of weight k in D, one finds |C2| =

∑
k nk

(
n−w
w−k

)
.

Now let C be the (disjoint!) union of C1 and C2. Then C has the w-witness
property. Indeed, let c ∈ C. Then if c ∈ C1, c admits [w] as witness, while if
c ∈ C2, c admits its support as witness.

As an illustration, let D be the sphere of radius w − t in {0, 1}w, for t ∈
{1, . . . , n−w

2 }. Then

f(n, w) ≥ |C| = 2w +
(

w

w − t

)((
n− w

t

)
− 1
)

.

If w satisfies 2w >
(

n
n/2

)
but w < n− 1, this improves on examples 1, 1’, and 2

of the last subsection, in that one finds then

f(n, w) ≥ |C| > max(
(

n

w

)
,

(
n

n/2

)
, 2w).

On the other hand, remark that C1 ⊂ {0, 1}[w] and C2 ⊂ Sw(0), so that |C| ≤
2w +

(
n
w

)
.

7 Conclusion and Open Problems

We have determined the asymptotic size of optimal w-witness codes. A few issues
remain open in the non-asymptotic case, among which:

– When is the sphere Sw(0) the/an optimal w-witness code? Do we have
f(n, w) =

(
n
w

)
for w ≤ n/2 ? In particular do we have f(2w, w) =

(
2w
w

)
?

– For w > n/2, do we have f(n, w) ≤ max(
(

n
n/2

)
, 2w +

(
n
w

)
) ?

– Denoting by f(n, w,≥ d) the maximal size of a w-witness code with minimum
distance d, can the asymptotics of Proposition 2 be improved to

1
n

log2 f(n, ωn,≥ δn) < h(ω) ?
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On Rank and Kernel of Z4-Linear Codes�

C. Fernández-Córdoba, J. Pujol, and M. Villanueva

Department of Information and Communications Engineering,
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Abstract. A code C is a quaternary linear code if C is a subgroup of Zn
4 .

In this paper, the rank and dimension of the kernel for Z4-linear codes,
which are the corresponding binary codes of quaternary linear codes, are
studied. The possible values of these two parameters for Z4-linear codes,
giving lower and upper bounds, are established. For each possible rank
r between these bounds, the construction of a Z4-linear code with rank
r is given. Equivalently, for each possible dimension of the kernel k, the
construction of a Z4-linear code with dimension of the kernel k is given.

Keywords: Quaternary codes, Z4-linear codes, rank, kernel.

1 Introduction

Let Z2 and Z4 be the ring of integers modulo 2 and modulo 4, respectively.
Let Zn

2 be the set of all binary vectors of length n and let Zn
4 be the set of

all quaternary vectors of length n. Any non-empty subset C of Zn
2 is a binary

code and a subgroup of Zn
2 is called a binary linear code or a Z2-linear code.

Equivalently, any non-empty subset C of Zn
4 is a quaternary code and a subgroup

of Zn
4 is called a quaternary linear code.

The Gray map: φ : Zn
4 −→ Z2n

2 , is given by φ(v1, . . . , vn) = (ϕ(v1), . . . , ϕ(vn))
where ϕ(0) = (0, 0), ϕ(1) = (0, 1), ϕ(2) = (1, 1), ϕ(3) = (1, 0). This Gray map is
an isometry which transforms Lee distances defined in a quaternary code C over
Zn

4 to Hamming distances defined in the corresponding binary code C = φ(C).
Note that the length of the binary code C is N = 2n.

Let C be a quaternary linear code. Since C is a subgroup of Zn
4 , it is isomorphic

to an abelian structure Zγ
2 × Zδ

4. Therefore, C is of type 2γ4δ as a group, it has
|C| = 2γ+2δ codewords and the number of order two codewords in C is 2γ+δ.
Moreover, the binary image C = φ(C) of any quaternary linear code C of length
n and type 2γ4δ is called a Z4-linear code of length N = 2n and type 2γ4δ.

Two binary codes C1 and C2 of length n are said to be isomorphic if there
exists a coordinate permutation π such that C2 = {π(c) | c ∈ C1}. They are said
to be equivalent if there exists a vector a ∈ Zn

2 and a coordinate permutation π
such that C2 = {a+π(c) | c ∈ C1}. Two quaternary linear codes C1 and C2 both
� This work was supported in part by the Spanish MEC and the European FEDER

under Grants MTM2006-03250 and TSI2006-14005-C02-01.

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 46–55, 2008.
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of length n and type 2γ4δ are said to be monomially equivalent, if one can be
obtained from the other by permuting the coordinates and (if necessary) chang-
ing the signs of certain coordinates. They are said to be permutation equivalent
if they differ only by a permutation of coordinates (see [9]). Note that if two
quaternary linear codes C1 and C2 are monomially equivalent, then, after the
Gray map, the corresponding Z4-linear codes C1 = φ(C1) and C2 = φ(C2) are
isomorphic as binary codes.

Two structural properties of non-linear binary codes are the rank and dimen-
sion of the kernel. The rank of a binary code C, rank(C), is simply the dimension
of 〈C〉, which is the linear span of the codewords of C. The kernel of a binary
code C, K(C), is the set of vectors that leave C invariant under translation, i.e.
K(C) = {x ∈ Zn

2 | C + x = C}. If C contains the all-zero vector, then K(C) is a
binary linear subcode of C. In general, C can be written as the union of cosets
of K(C), and K(C) is the largest such linear code for which this is true (see [1]).
We will denote the dimension of the kernel of C by ker(C).

The rank and dimension of the kernel have been studied for some families of
Z4-linear codes (see [3], [4], [5], [10], [14]). These two parameters do not always
give a full classification of Z4-linear codes, since two non-equivalent Z4-linear
codes could have the same rank and dimension of the kernel. In spite of that,
they can help in classification, since if two Z4-linear codes have different ranks
or dimensions of the kernel, they are non-equivalent. Moreover, in this case the
corresponding quaternary linear codes are not monomially equivalent, so these
two parameters can also help to distinguish between quaternary linear codes
that are not monomially equivalent.

The aim of this paper is the study of the rank and dimension of the kernel of
Z4-linear codes. The paper is organized as follows. In Section 2, we recall some
properties related to both quaternary linear and Z4-linear codes, including the
linearity of Z4-linear codes. In Section 3, we determine all possible values of the
rank for Z4-linear codes and we prove the existence of a Z4-linear code with
rank r for all possible values of r. Equivalently, in Section 4, we establish all
possible values of the dimension of the kernel for Z4-linear codes and we prove
the existence of a Z4-linear code with dimension of the kernel k for all possible
values of k. Finally, the conclusions are given in Section 5.

2 Preliminaries

Let C be a quaternary linear code. Although C is not a free module, every code-
word is uniquely expressible in the form

γ∑
i=1

λiui +
δ∑

j=1

μjvj ,

where λi ∈ Z2 for 1 ≤ i ≤ γ, μj ∈ Z4 for 1 ≤ j ≤ δ and ui, vj are vectors in Zn
4

of order two and four, respectively. The vectors ui, vj give us a generator matrix
G of size (γ + δ) × n for the code C. In [8], it was shown that any quaternary
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linear code of type 2γ4δ is permutation equivalent to a quaternary linear code
with a canonical generator matrix of the form

GS =
(

2T 2Iγ 0
S R Iδ

)
, (1)

where R, T are matrices over Z2 of size δ × γ and γ × (n− γ − δ), respectively;
and S is a matrix over Z4 of size δ × (n− γ − δ).

The concepts of duality for quaternary linear codes were also studied in [8],
where the inner product for any two vectors u, v ∈ Zn

4 is defined as

u · v =
n∑

i=1

uivi ∈ Z4.

Then, the dual code of C, denoted by C⊥, is defined in the standard way

C⊥ = {v ∈ Zn
4 | u · v = 0 for all u ∈ C}.

The corresponding binary code φ(C⊥) is denoted by C⊥ and called the Z4-dual
code of C. Moreover, the additive dual code C⊥, which is also a quaternary linear
code, is of type 2γ4n−γ−δ.

The following two lemmas were proved for quaternary vectors and quaternary
linear codes, respectively, in [8]. Let u ∗ v denote the component-wise product,
for any u, v ∈ Zn

4 .

Lemma 1 ([8] or [16]). For all u, v ∈ Zn
4 , we have

φ(u + v) = φ(u) + φ(v) + φ(2u ∗ v).

Note that if u or v are vectors in Zn
4 of order two, then φ(u + v) = φ(u) + φ(v).

Lemma 2 ([8] or [16]). Let C be a quaternary linear code. The Z4-linear code
C = φ(C) is a binary linear code if and only if 2u ∗ v ∈ C, for all u, v ∈ C.

Note that if G is a generator matrix of a quaternary linear code C and {ui}γ
i=1

and {vj}δ
j=0 are the row vectors of order two and four in G, respectively, then

the Z4-linear code C = φ(C) is a binary linear code if and only if 2vj ∗vk ∈ C, for
all j, k satisfying 1 ≤ j < k ≤ δ, since the component-wise product is bilinear.

3 Rank of Z4-Linear Codes

Let C be a quaternary linear code of length n and type 2γ4δ and let C = φ(C) be
the corresponding Z4-linear code of length N = 2n. In this section, we will study
the rank of these Z4-linear codes C. We will show that there exists a Z4-linear
code C with r = rank(C) for any possible value of r.

Lemma 3. Let C be a quaternary linear code of type 2γ4δ and let C = φ(C)
be the corresponding Z4-linear code. Let G be a generator matrix of C and let
{ui}γ

i=1 be the rows of order two and {vj}δ
j=0 the rows of order four in G. Then,

〈C〉 is generated by {φ(ui)}γ
i=1, {φ(vj), φ(2vj)}δ

j=1 and {φ(2vj ∗ vk)}1≤j<k≤δ .
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Proof. If x ∈ C, then x can be expressed as x = vj1 + · · · + vjm + w, where
{j1, . . . , jm} ⊆ {1, . . . , δ} and w is a codeword of order two. By Lemma 1, φ(x) =
φ(vj1 + · · ·+ vjm) + φ(w), where φ(w) is a linear combination of {φ(ui)}γ

i=1 and
{φ(2vj)}δ

j=1, and φ(vj1 + · · ·+ vjm) = φ(vj1 )+ · · ·+φ(vjm)+
∑

1≤k<l≤m φ(2vjk
∗

vjl
). Therefore, φ(x) is generated by {φ(ui)}γ

i=1, {φ(vj), φ(2vj)}δ
j=1 and {φ(2vj ∗

vk)}1≤j<k≤δ. ��

Proposition 1. Let C be a quaternary linear code of length n and type 2γ4δ and
let C = φ(C) be the corresponding Z4-linear code of length N = 2n. Then,

rank(C) ∈ {γ + 2δ, . . . , min(n + δ, γ + 2δ +
(

δ

2

)
)}.

Let C be a quaternary linear code of length n and type 2γ4δ and let C = φ(C)
with rank(C) = γ + 2δ + r̄, where r̄ ∈ {0, . . . , min(n − γ − δ,

(
δ
2

)
)}. Let G be

a generator matrix of C and let {ui}γ
i=1 be the rows of order two and {vj}δ

j=0

the rows of order four in G. By the proof of Proposition 1, the quaternary linear
code SC generated by {ui}γ

i=1, {vj}δ
j=1 and {2vj ∗ vk}1≤j<k≤δ is of type 2γ+r̄4δ

and it is easy to check that φ(SC) = 〈C〉, by Lemma 3. Therefore, the code 〈C〉
is both binary linear and Z4-linear.

For the parameters n, γ, δ given by some families of Z4-linear codes such as,
for example, extended 1-perfect Z4-linear codes (see [5], [13] or Example 1), the
upper bound above is tight. We also know Z4-linear codes such that the rank
is in between these two bounds such as, for example, the Hadamard Z4-linear
codes (see [14] or Example 1).

Example 1. For any integer t ≥ 3 and each δ ∈ {1, . . . , �(t + 1)/2�} there
exists a unique (up to isomorphism) extended 1-perfect Z4-linear code C of length
n = 2t, such that the Z4-dual code of C has γ = t + 1 − 2δ (see [10]). The
Hadamard Z4-linear codes H are the Z4-dual of the extended 1-perfect Z4-linear
codes.

The rank of the Hadamard Z4-linear codes was computed in [14] and the rank
of the extended 1-perfect Z4-linear codes in [5] and [10]. Specifically,

rank(H) =
{

γ + 2δ +
(

δ−1
2

)
if δ ≥ 3

γ + 2δ if δ = 1, 2

and rank(C) = γ̄ + 2δ̄ + δ = n + δ̄ (except when t = 4 and δ = 1), where γ̄ = γ
and δ̄ = n − γ − δ. Note that the rank of the extended 1-perfect Z4-linear codes
satisfies the upper bound.

The next point to be solved is how to construct Z4-linear codes with any rank
in the range of possibilities given by Proposition 1.

Lemma 4. There exists a quaternary linear code C of length n and type 2γ4δ if
and only if

γ, δ ≥ 0, n > 0, δ + γ ≤ n. (2)
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Proof. Straightforward from matrix (1). ��

Theorem 1. Let n, γ, δ be integer numbers satisfying (2). Then, there exists a
Z4-linear code C of length N = 2n and type 2γ4δ with rank(C) = r for any

r ∈ {γ + 2δ, . . . , min(n + δ, γ + 2δ +
(

δ

2

)
)}.

Proof. Let C be a quaternary linear code of length n and type 2γ4δ with generator
matrix

G =
(

2T 2Iγ 0
Sr 0 Iδ

)
,

where Sr is a matrix over Z4 of size δ × (n − γ − δ), and let C = φ(C) be its
corresponding Z4-linear code. Let {ui}γ

i=1 and {vj}δ
j=0 be the row vectors of

order two and four in G, respectively.
By Proposition 1, rank(C) = r = γ + 2δ + r̄, where r̄ ∈ {0, . . . , min(n − γ −

δ,
(
δ
2

)
)}. In the generator matrix G, the Gray map image of the γ row vectors

{ui}γ
i=1 and the 2δ row vectors {vj}δ

j=1, {2vj}δ
j=1 are independent binary vectors

over Z2. For each r̄ ∈ {0, . . . , min(n − γ − δ,
(
δ
2

)
)}, we will define Sr in an

appropriate way such that rank(C) = r = γ + 2δ + r̄.
Let ek, 1 ≤ k ≤ δ, denote the column vector of length δ, with a one in the

kth coordinate and zeroes elsewhere. For each r̄ ∈ {0, . . . , min(n − γ − δ,
(
δ
2

)
)},

we can construct Sr as a quaternary matrix where in r̄ columns there are r̄
different column vectors ek + el of length δ, 1 ≤ k < l ≤ δ, and in the remaining
columns there is the all-zero column vector. For each one of the r̄ column vectors
the rank increases by 1. In fact, if the column vector ek + el is included in
Sr, then the quaternary vector 2vk ∗ vl has only a two in the same coordinate
where the column vector ek + el is and φ(2vk ∗ vl) is independent to the vectors
{φ(ui)}γ

i=1,{φ(vj)}δ
j=1, {φ(2vj)}δ

j=1 and {φ(2vs ∗ vt)}, {s, t} �= {k, l}. Since the
maximum number of columns of Sr is n − γ − δ and the maximum number of
different such columns is

(
δ
2

)
, the result follows. ��

Let Sr be a matrix over Z4 of size δ × (n − γ − δ) where in r̄ = r − (γ + 2δ)
columns there are r̄ different column vectors ek + el of length δ, 1 ≤ k < l ≤ δ,
and in the remaining columns there are the all-zero column vector. Note that by
the proof of Theorem 1, any quaternary linear code C of length n and type 2γ4δ

with generator matrix

G =
(

2T 2Iγ 0
Sr 0 Iδ

)
,

where T any matrix over Z2 of size γ×(n−γ−δ), has rank(φ(C)) = r = γ+2δ+r̄.

Example 2. By Proposition 1, we know that the possible ranks for Z4-linear
codes, C, of length 18 and type 2245 are rank(C) = r ∈ {12, 13, 14, 15}. For
each possible r, we can construct a Z4-linear code C with rank(C) = r, taking
the following generator matrix of C = φ−1(C):
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GS =
(

2T 2 0
Sr 0 I5

)
,

where S12 = (0) and S13, S14, and S15 are constructed as follows:

S13 =

⎛
⎜⎜⎜⎜⎝

1 0 0
1 0 0
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎠ , S14 =

⎛
⎜⎜⎜⎜⎝

1 0 0
1 1 0
0 1 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎠ , S15 =

⎛
⎜⎜⎜⎜⎝

1 0 1
1 1 0
0 1 1
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎠ .

4 Kernel Dimension of Z4-Linear Codes

In this section, we will study the dimension of the kernel of Z4-linear codes
C = φ(C). We will also show that there exists a Z4-linear code C with k = ker(C)
for any possible value of k.

Lemma 5. Let C be a quaternary linear code and let C = φ(C) be the corre-
sponding Z4-linear code. Then,

K(C) = {φ(u) | u ∈ C and 2u ∗ v ∈ C, ∀v ∈ C}.

Proof. By Lemma 2, φ(u) + φ(v) ∈ C if and only if 2u ∗ v ∈ C for all u, v ∈ C.
Thus, the result follows. ��

Note that if G is a generator matrix of a quaternary linear code C and C = φ(C),
φ(u) ∈ K(C) if and only if u ∈ C and 2u ∗ v ∈ C for all v ∈ G. Moreover, all
codewords of order two in C belong to K(C).

Lemma 6. Let C be a quaternary linear code and let C = φ(C) be the corre-
sponding Z4-linear code. Given x, y ∈ C, φ(x) + φ(y) ∈ K(C) if and only if
φ(x + y) ∈ K(C).

Proof. By Lemma 1, φ(x + y + 2x ∗ y) = φ(x) + φ(y). Now, by Lemma 5,
φ(x + y + 2x ∗ y) ∈ K(C) if and only if for all v ∈ C, 2(x + y + 2x ∗ y) ∗ v =
2(x + y) ∗ v ∈ C; that is, if and only if φ(x + y) ∈ K(C). ��

Lemma 7. Let C be a quaternary linear code of type 2γ4δ and let C = φ(C) be
the corresponding Z4-linear code. Then, ker(C) ∈ {γ + δ, γ + δ + 1, . . . , γ + 2δ−
2, γ + 2δ}.

Proof. The upper bound γ + 2δ comes from the linear case. The lower bound
γ + δ is straightforward, since there are 2γ+δ codewords of order two in C and,
by Lemma 5, the binary images by φ of all these codewords are in K(C). Also
note that if the Z4-linear code C is not linear, then the dimension of the kernel
is equal to or less than γ + 2δ− 2 (see [12]). Therefore, ker(C) ∈ {γ + δ, . . . , γ +
2δ − 2, γ + 2δ}. ��



52 C. Fernández-Córdoba, J. Pujol, and M. Villanueva

Given an integer m > 0, a set of vectors {v1, v2, . . . , vm} in Zn
4 and a subset

I = {i1, . . . , il} ⊆ {1, . . . , m}, we denote by vI the vector vi1 + · · ·+vil
. If I = ∅,

then vI = 0.

Proposition 2. Let C be a quaternary linear code of type 2γ4δ, with generator
matrix G, and let C = φ(C) be the corresponding Z4-linear code with ker(C) =
γ + 2δ − k̄, where k̄ ∈ {2, . . . , δ}. Then, there exist a set {v1, v2, . . . , vk̄} of row
vectors of order four in G, such that

C =
⋃

I⊆{1,...,k̄}
(K(C) + φ(vI))

It is important to note that if C is a Z4-linear code, then K(C) is a Z4-linear
subcode of C, by Lemma 6. The kernel of a quaternary linear code C of type 2γ4δ,
denoted by K(C), can be defined as K(C) = φ−1(K(C)), where C = φ(C) is the
corresponding Z4-linear code. By Lemma 5, K(C) = {u ∈ C | 2u ∗ v ∈ C, ∀v ∈ C}
and it is easy to see that K(C) is a quaternary linear subcode of C of type
2γ+k̄4δ−k̄. Moreover, by Proposition 2, given a quaternary linear code C with
generator matrix G, there exist a set {v1, v2, . . . , vk̄} of row vectors of order four
in G, such that

C =
⋃

I⊆{1,...,k̄}
(K(C) + vI).

Proposition 3. Let C be a quaternary linear code of length n and type 2γ4δ

and let C = φ(C) be the corresponding Z4-linear code of length N = 2n. Let
s = n− γ − δ. Then,⎧⎨

⎩
if s = 0, ker(C) = γ + 2δ,
if s = 1, ker(C) ∈ {γ + 2(δ − 	 δ−1

2 
), . . . , γ + 2(δ − 1), γ + 2δ},
if s ≥ 2, ker(C) ∈ {γ + δ, γ + δ + 1, . . . , γ + 2δ − 2, γ + 2δ}.

Example 3. Continuing with Example 1, the dimension of the kernel for a
Hadamard Z4-linear code H was computed in [14] and [10] and the dimension
of the kernel for an extended 1-perfect Z4-linear code C in [5]. Specifically,

ker(H) =
{

γ + δ + 1 if δ ≥ 3
γ + 2δ if δ = 1, 2

and

ker(C) =

⎧⎨
⎩

γ̄ + δ̄ + 1 if δ ≥ 3
γ̄ + δ̄ + 2 if δ = 2
γ̄ + δ̄ + t if δ = 1.

As in Section 3 for the rank, the next point to be solved here is how to construct
Z4-linear codes with any dimension of the kernel in the range of possibilities
given by Proposition 3.
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Theorem 2. Let n, γ, δ be integer numbers satisfying (2). Then, there exists a
Z4-linear code C of length N = 2n and type 2γ4δ with ker(C) = k for any

k ∈

⎧⎨
⎩
{γ + δ, . . . , γ + 2δ − 2, γ + 2δ} if s ≥ 2
{γ + 2(δ − 	 δ−1

2 
), . . . , γ + 2(δ − 1), γ + 2δ} if s = 1
{γ + 2δ} if s = 0,

where s = n− γ − δ.

Proof. Let C be a quaternary linear code of type 2γ4δ with generator matrix

G =
(

0 2Iγ 0
Sk 0 Iδ

)
,

where Sk is a matrix over Z4 of size δ× s, and let C = φ(C) be its corresponding
Z4-linear code. Taking Sk as the all-zero matrix over Z4, the code C is a binary
linear code, so ker(C) = k = γ + 2δ.

When s = 1, for each k̄ ∈ {2, 4, . . . , 2	 δ−1
2 
} and k = γ + 2δ − k̄, we can

construct a matrix Sk over Z4 of size δ × 1 with an even number of ones, k̄,
and zeroes elsewhere. In this case, ker(C) = k = γ + 2δ − k̄, by the proof of
Proposition 3.

Finally, when s ≥ 2, for each k̄ ∈ {2, 3, . . . , δ} and k = γ + 2δ − k̄, we can
construct a matrix Sk over Z4 of size δ × s, such that only in the last δ − k̄ row
vectors all components are zero and, moreover, in the first k̄ coordinates of each
column vector there are an even number of ones and zeros elsewhere. In this
case, it is easy to prove that ker(C) = k = γ + 2δ − k̄. ��

Example 4. By Proposition 3, we know that the possible dimensions of the
kernel for Z4-linear codes, C, of length 18 and type 2245 are ker(C) = k ∈
{12, 10, 9, 8, 7}. For each possible k, we can construct a Z4-linear code C with
ker(C) = k, taking the following generator matrix of C = φ−1(C):

GS =
(

0 2 0
Sk 0 I5

)
,

where S12 = (0) and S10, S9, S8 and S7 are constructed as follows:

S10 =

⎛
⎜⎜⎜⎜⎝

1 0 0
1 0 0
0 0 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎠ , S9 =

⎛
⎜⎜⎜⎜⎝

1 0 0
1 1 0
0 1 0
0 0 0
0 0 0

⎞
⎟⎟⎟⎟⎠ , S8 =

⎛
⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 1 0
1 0 0
0 0 0

⎞
⎟⎟⎟⎟⎠ , S7 =

⎛
⎜⎜⎜⎜⎝

1 0 0
1 1 0
1 1 0
1 1 0
0 1 0

⎞
⎟⎟⎟⎟⎠ .

5 Conclusion

In this paper we studied two structural properties of Z4-linear codes, the rank
and dimension of the kernel. Using combinatorial enumeration techniques, we
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established lower and upper bounds for the possible values of these parameters.
We also gave the construction of a Z4-linear code with rank r (resp. kernel
dimension k) for each feasible value r (resp. k).

The rank, kernel and dimension of the kernel are defined for binary codes
and they are specially useful for binary non-linear codes. We showed that for
binary codes which are Z4-linear codes, we can also define the kernel using the
corresponding quaternary linear codes, which are subgroups of Zn

4 . In this case,
in order to compute the kernel K(C) of a Z4-linear code C is much easier if we
consider the corresponding quaternary linear code C = φ−1(C) and we compute
K(C) = φ−1(K(C)) using a generator matrix of C. Moreover, we also proved that
if C is a Z4-linear code, then K(C) and 〈C〉 are also Z4-linear codes. Finally,
since K(C) ⊆ C ⊆ 〈C〉 and C can be written as the union of cosets of K(C), we
also have that, equivalently, K(C) ⊆ C ⊆ SC , where SC = φ−1(〈C〉), and C can
be written as cosets of K(C).

As a future research in this issue, it would be interesting to establish the
bounds of the rank, once the dimension of the kernel is fixed, and give the
construction of a Z4-linear code with rank r and kernel dimension k for each
possible pair (r, k).

According to the definition given by Delsarte in 1973 (see [7]), additive codes are
subgroups of the underlying abelian group in a translation association scheme. In
the special case of a binary Hamming scheme, that is, when the underlying abelian
group is of order 2n, the only structures for the abelian group are those of the form
Zα

2 × Zβ
4 , with α + 2β = n. Therefore, the subgroups C of Zα

2 × Zβ
4 are the only

additive codes in a binary Hamming scheme. This kind of codes have been studied
in [2], [6], [13], [15]. Hence, as a future research it would also be interesting to
generalize these results to the Z2Z4-additive codes, that is, subgroups of Zα

2 ×Zβ
4 .

References

1. Bauer, H., Ganter, B., Hergert, F.: Algebraic techniques for nonlinear codes. Com-
binatorica 3, 21–33 (1983)
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Abstract. Algebraic methods play an important role in coding theory.
For instance, there are many connections between codes and groups. In
this paper we will present two results that show different applications of
algebraic methods in coding theory. One of them refers to the classical
context and another one to the quantum error correcting theory. These
results can be found in [5] and [13] respectively, where proofs and more
details can be found.

1 Some Constructions of Linearly Optimal Group Codes

Algebraic structures, not necessarily associative or commutative, have been used
in the construction of codes. For instance in [6] and [7] different classes of recur-
sive MDS codes based on properties of quasigroups are given.

In [8] authors study codes constructed from left ideals of a loop ring A = RL
for a finite ring R and a finite loop L.

(Quasi-)group codes are linear codes over a finite ring R obtained from left
ideals of a (quasi-)group ring A = RG of a finite (quasi-)group G. Let G =
{g1, ..., gn} and I ≤ AA be a left ideal of A. Then the set K = K(I) of all words
(r1, ..., rn) ∈ Rn such that

∑
rigi ∈ I is a linear n-code over the ring R, i.e. a

submodule of the module RRn. Such codes, contained in the group ring, will be
also called G-codes over R. The left ideal I ≤ AA will be identified with the code
K(I) and, with some abuse of notation, we will say that I is an [n, k, d]q-code.
Here n is the length of the code, qk its cardinality and d its distance . Through
the previous identification we can define for every x =

∑
rigi ∈ A its Hamming

weight ||x|| by ||x|| = ||(r1, ..., rn)||.
Several results about such codes are known in the case R = F a finite field

and G an cyclic group, see e.g. [23,14]. In the case of non-abelian groups there
are some results in [24,25,26].

In [8] a computation of parameters, for codes K = K(I) and left ideals I of
loop-algebras FG of small orders, was carried out.

A (generally nonlinear) [n, k, d]-code C ⊆ Fn
q is said to be optimal if |C| = qk

is the maximum of all possible cardinalities of n-codes with a given distance d
(see [14]). Every code C satisfies the inequality k ≤ n− d + 1 (Singleton bound)
and the code C is called MDS-code if k = n− d + 1. Clearly, any MDS-code is
optimal.

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 56–68, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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Any quasi-group ring A = RG contains two important examples of quasigroup
MDS-code: its fundamental ideal that is an [n, n− 1, 2]-code:

Δ(A) = {
∑
g∈G

r(g)g :
∑
g∈G

r(g) = 0}, (1)

and
I0 = A(

∑
g∈G

g) = F (
∑
g∈G

g), (2)

that is an [n, 1, n]-code.
Note that Δ(A) can be described also as the R-submodule of A spanned by

all differences e− g, g ∈ G.
According to the definition of optimal code we will say that a linear [n, k, d]q-

code over a field Fq is linearly optimal if k is the maximum of the dimensions of
all Fq-linear n-codes with a fixed distance d.

Let n(k, q) (resp. m(k, q)) be the maximal length of all MDS-codes C with
combinatorial dimension k = logq |C| over an alphabet of q elements (resp., for a
primary q, the maximal length of all linear MDS codes over the field Fq). Clearly
m(k, q) ≤ n(k, q).

It is known (see [14] and [23]) that

n(k, q) = k + 1 if q ≤ k + 1,

n(k, q) ≤ q + k − 1 if k ≤ q and q is even ,

n(k, q) ≤ q + k − 2 if 3 ≤ k ≤ q and q is odd .

The following simple result helps to prove that some codes are linearly optimal.

Proposition 1 ([8]). Let n, k be natural numbers, q is primary, such that

n > m(k + 1, q).

Then any Fq-linear [n, k, n− k]q-code is linearly optimal.

So there are linearly optimal [8, 4, 4]q-codes (for q = 2, 3, 4, 5) contained in the
group algebras over the dihedral group D4 or the quaternion group Q8 of order 8.

In [8] some known codes, for instance the [7, 4, 3]2-Hamming code or the
[8, 4, 4]2-Brauer code, are obtained as ideals of a group algebra. But in general,
the lattice of left ideals of nonassociative loop algebras A = FL, with |F | ≤ 5,
|L| ≤ 7, have only four ideal 0, I0, Δ, A, so they do not contain interesting loop
codes. However, there are linearly optimal codes in the group algebras of non-
commutative groups that can not be obtained using abelian groups. This is the
case for the [8, 3, 5]-code in F4Q8, the [10, 4, 6]-codes in F4D5 and in F5D5, the
[12, 8, 4]- and [12, 6, 6]-codes in F4A4 and the [12, 6, 6]-code in F4D6. It is re-
markable that many of the best codes obtained are linked to algebras that are
neither commutative nor semisimple.
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1.1 The Main Results

Below we will give constructions of [n, n − 3, 3]q group codes over F = Fq for
n = 2q and n = 3q.

Let us note that linear [n, n − 3, 3]q-codes over Fq can be easily constructed
from a Hamming [N, N − 3, 3]-code for N = q2 + q + 1 [3,12]. But here we
construct such codes as group codes over Fq.

In what follows 1 will denote the identity element of the field F while the
identity element of a group G (that is also identity element of the group ring
F (G) will be denoted by e.

It can be proved that Reed-Solomon codes can be represented as group codes.

Theorem 1. Let (H, ·) be a p-elementary abelian group of order q = p l. For a
given isomorphism of abelian groups ϕ : (H, ·) → (F, +) we consider the following
elements

us =
∑
h∈H

ϕ(h)sh ∈ FH, s = 0, . . . , q − 2. (3)

Then for every i, 1 ≤ i ≤ q − 1 the subspace

Ri = Fu0 + . . . + Fui−1 ≤ F FH (4)

is a Reed-Solomon [q, i, q +1− i]q-MDS code and an ideal in FH. In particular

Rq−1 = Δ(FH). (5)

If s = pc for some 1 ≤ c ≤ l− 1, then

Rs = FHus−1 (6)

is a principal ideal.

Theorem 2. Let G be a group of order 2q, containing a p-elementary abelian
subgroup H of order q. Then there exists a [2q, 2q−3, 3]q linearly optimal G-code
over Fq.

Proof. Following the previous notation, let ϕ : (H, ·) → (F, +) be an isomor-
phism of abelian groups and, as in Theorem 1

R = Rq−2, β ∈ G \H v ∈ Δ(FH) \ R, σ = ev + βv. (7)

Then the desired code is
L = eR+ βR+ Fσ. (8)

In a similar way, [3q, 3q − 3, 3]q linearly optimal codes can be constructed. The
construction is a bit more complicated and some extra assumption over the
group G has to be made. We will assume that our group G of order 3q contains
a normal subgroup H that is p-elementary abelian of order q and that 3|q − 1.

Given an arbitrary element β ∈ G \ H , let us denote β̂ : H → H the auto-
morphism of H induced by the conjugation by the element β.
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It is well known that H has a “natural” structure of F -vector space and β̂ is
a linear automorphism of H . We will use additive notation to refer to this linear
structure.

Note that since 3||G| there is an element β ∈ G of order 3, and since 3|q − 1
we have β /∈ H and

G = H ∪ βH ∪ β2H. (9)

For such element β that satisfies β3 = 1 the minimal polynomial of the linear
map β̂ divides to x3 − 1. So an arbitrary eigenvalue λ of β̂ satisfies λ3 = 1.

We will assume that β̂ has at most one eigenvalue λ ∈ Fp, λ �= 1, that is,∣∣∣Spec β̂ \ {1}
∣∣∣ ≤ 1. (10)

So, always using the above notation and assuming the condition (10), we have
the following result.

Lemma 1. There exist an isomorphism

ϕ : H → (F, +)

and an element θ ∈ F of order 3 such that

ϕ(a) + θϕ(β̂(a)) + θ2ϕ(β̂2(a)) = 0 (11)

for any a ∈ H.

From now on we assume that θ and ϕ satisfy (11) and G, H, F satisfy the con-
ditions of Lemma 1. Take R = Rq−2 from Theorem 1 and define

f = e + β + β2, g = e + θβ + θ2β2, f1 = f, f2 = fv, f3 = gv, (12)

where v = −uq−2 from Theorem 1.
Consider, as above, an element β ∈ G \H of order 3. Since

G = H ∪ βH ∪ β2H, (13)

it is not difficult to see that the subspace

J = R+ βR+ β2R (14)

is a left ideal of the ring FG and also a [3q, 3(q− 2), 3]q-code. It can be proved
that the subspace

L = J + Ff1 + Ff2 + Ff3 (15)

is a left ideal of the ring FG with the distance 3. So L is a linearly optimal code.
Notice that condition 10 is satisfied if β acts on H by conjugation as a fixed
scalar multiplication (in particular, if G is commutative) or if 3 � p− 1.



60 S. González, C. Mart́ınez, and A.P. Nicolás

So we get the following

Theorem 3. Let q = p l > 2 be a primary number such that 3|q − 1, G be a group
of order 3q, containing an elementary abelian normal p-subgroup H of order q. Let
β ∈ G be an element of order 3.ConsiderH as an l-dimensional vector space overFp

anddenote by β̂ : H → H the linear operator on this space definedas the conjugation
by β. Suppose the set Spec β̂ of all eigenvalues of β̂ in Fp satisfies the condition:∣∣∣Spec β̂ \ {1}

∣∣∣ ≤ 1. (16)

Then there exists a [3q, 3q − 3, 3]q linearly optimal G-code.

2 Clifford Codes

Quantum errors can be written in terms of an error operator basis E . Several
approaches are possible, but one of the most useful is do it through the nice error
bases [17]. This type of bases can be obtained by a projective representation of
a group E, called error group, or, equivalently, by a faithful irreducible ordinary
representation of a central extension of E called the abstract error group G.

One of the most common construction of quantum error correcting codes is
based on binary stabilizer codes [18]. If ρ is a faithful unitary ordinary repre-
sentation of the abstract error group G, then an stabilizer code is defined as the
joint eigenspace Q of the representing matrices ρ(n) for all n ∈ N , where N is a
normal subgroup of G.

Clifford codes [18,19] are a further generalization of this type of codes. Their
definition involves a normal subgroup N of G that is not necessarily abelian.

So a first problem related to Clifford codes is to decide whether a Clifford
code is an stabilizer code. Notice that even if the normal subgroup N used in
the construction of a given Clifford code is nonabelian, it is still possible to
construct the same Clifford code through another abelian subgroup and so the
code would be an stabilizer code. A characterization of Clifford codes which are
also stabilizer codes is given in [19].

The result of [19] was extended in [13] by using properties of the characters
of the abstract error groups G. Those groups are known as groups of central type
and their characters have been studied in several papers [10,15]. The existence
of fully ramified characters over certain subgroups of G characterizes abstract
error groups and makes possible a new formulation of those results.

In [13] Clifford codes over the direct product of abstract error groups were
constructed, following the same lines used in the classical case, and their correc-
tion properties were studied and compared with the corresponding properties of
stabilizer codes.

2.1 Preliminaries

We will remember some notions of representation theory that will be used.
Let U(n) be the unitary group of degree n, that is, the multiplicative group

of all n× n unitary matrices.
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Definition 1. Let E be a group of order n2 and ρ : E → U(n) a map satisfying:

1. ρ(1) = In,
2. tr(ρ(g)) = nδg,1 for all g ∈ E,
3. ρ(g)ρ(h) = ω(g, h)ρ(gh) for all g, h ∈ E,

where ω is a scalar function ω : E × E → C∗. A nice error basis on H = Cn is
a set E = {ρ(g) ∈ U(n)} g ∈ E.

Notice that Conditions 1 and 3 in the above definition imply that ρ is a C-
projective representation of the group E (see [16]) and Condition 2 implies
the orthogonality of the matrices ρ(g) with respect the inner product 〈A, B〉 =
tr(A†B)/n. So ρ is an irreducible projective representation.

Let E be a group, |E| = n2, with a nice error basis E . Such a group is called
the index group of E . The following characterization is known (see [17]).

Theorem 4. Let E = {ρ(g)} g ∈ E be a set of unitary matrices parametrized
by the elements of a finite group E. The set E is a nice error basis with index
group E if and only if ρ : E → U(n), g → ρ(g), is a unitary irreducible faithful
projective representation of E of degree |E|1/2.

Usually, instead of E, some central extension G, which is isomorphic to the
group generated by the matrices {ρ(g) : g ∈ E}, will be used. The projective
representation of E becomes an ordinary representation of G. This group is
called abstract error group.

It can be proved that G is an abstract error group if and only if it satisfies
the following two conditions:

– There exists an ordinary irreducible character φ ∈ Irr(G) such that φ(1) =
|G : Z(G)|1/2,

– the center Z(G) is a cyclic group.

A group with the first property is said to be of central type, so G is an abstract
error group if and only if G is of central type and its center is cyclic.

We will remind some results of Clifford theory (see chapter 5 of [16] and [9])
which will be used in the study of stabilizer and Clifford codes.

Let N be a normal subgroup of G, and χ ∈ Irr(N) an irreducible character
of N . Let g be any element of G. Then the conjugate character χg : N →
C is defined by χg(n) = χ(gng−1), for all n ∈ N . If φ ∈ Irr(G), Clifford’s
Theorem (see Theorem 6.2 in [16]) ensures that all irreducible components of
the restriction φN are conjugate. That is:

Theorem 5 (Clifford’s Theorem). Let N � G and φ ∈ Irr(G). Let χ
be an irreducible constituent of φN (i.e 〈φ, χ〉N �= 0) and suppose that χ =
χ1, χ2, . . . , χt are the distinct conjugates of χ in G. If e = 〈φ, χ〉N , we have

φN = e

t∑
i=1

χi.
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Clifford theorem can be reformulated in terms of modules. Let us suppose that
T is a C-representation of N and g is an element of G. We define the conjugate
representation T g by T g(n) = T (gng−1), for all n ∈ N . It is clear that the
character of the conjugate representation is the conjugate character. We say that
two CN -modules W1 and W2 are conjugated if the C-representations afforded
by these two modules are conjugated.

Theorem 6 (Clifford’s Theorem for modules). Let N be a normal subgroup
of G and let V be an irreducible CG-module. Let W be any irreducible CN -module
of V . Then

1. V =
∑

Wi where the Wi are irreducible CN -submodules of V .
2. Each Wi is of the form Wgi for some gi ∈ G and so is conjugate to W .

2.2 Clifford and Stabilizer Codes

One of the most quantum codes are quantum stabilizer codes (see [18] and [1]).

Definition 2. Let G be an abstract error group and let ρ be a faithful irre-
ducible unitary representation of G. If N � G, then the joint eigenspace Q of
the representing matrices ρ(n) for all n ∈ N is said to be an stabilizer code.

If Q is nontrivial, then N is necessarily abelian.
Clifford codes are a generalization of stabilizer codes. They can be constructed

from a normal subgroups N � G which is not necessarily abelian.
Let G be an abstract error group and let N � G. As in Definition 2, let ρ be

a faithful irreducible unitary representation of G of degree |G : Z(G)|1/2. Let us
suppose that the representation ρ affords an irreducible CG-module V . Then,
the restriction of ρN affords the CN -module VN which can be decomposed, see
Theorem 6, as a sum of irreducible conjugate CN -modules as follows:

VN =
∑

Wi =
s∑

i=1

Wgi.

Let {Wg1, . . . , Wgt} be a maximal set of non-isomorphic CN -modules among
the {Wgi} 1 ≤ i ≤ s. For each 1 ≤ i ≤ t, let us denote Vi the sum of all conjugates
Wgj, which are isomorphic to Wgi as CN -modules. Then VN =

∑t
i=1 Vi, and

the CN -modules Vi are called homogeneous components of VN (see Definition
49.5 in [9]).

A quantum Clifford code Q is a homogeneous component Q = W ⊕ · · · ⊕W
of VN . Note that if N is abelian, then dim(W ) = 1, so N acts as an scalar over
Q, and Q is an stabilizer code. The correcting properties of the code depend on
the inertia subgroup T (W ) = {g ∈ G : Wg � W} and on the set Z(W ) = {g ∈
T (W ) : ∃λ ∈ C, vg = λv, ∀v ∈ Q} of elements that act on Q as scalars. It can
be proved (see [18]) that Q can to correct a set of errors Σ ⊆ G always that
e−1
1 e2 /∈ T (W )− Z(W ) for all e1, e2 in Σ.
Let φ be the irreducible character afforded by the CG-module V , and let χ be

the afforded one by the CN -module W . It is clear that χ ∈ Irr(N) and that the
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inner product 〈φ, χ〉N �= 0. Moreover, the conjugate modules Wg, with g ∈ G,
afford the conjugate characters χg.

In general, G acts on Irr(N) by conjugation and for each χ ∈ Irr(N) its
stabilizer is the inertia subgroup

T (χ) = {g ∈ G : χg = χ} = {g ∈ G : χ(gng−1) = χ(n), ∀n ∈ N},

which can be identified with the set T (W ).
If θ is the character afforded by the CT (χ)-module Q, then it can be proved

that θ is the unique character θ ∈ Irr(T (χ)) such that 〈θ, χ〉N �= 0 and 〈φ, θ〉T (χ)

�= 0. The quasi-kernel Z(θ) = {g ∈ T (χ) : |θ(g)| = θ(1)} consists of those
elements of G that act on the code Q as scalars and so can be identified with
Z(W ). Thus, an error ρ(g) is detectable by the code Q (see [19]) if and only if
g /∈ T (χ)− Z(θ).

Alternatively, Clifford codes can be defined as the image of an orthogonal
projector (see [19]). This definition shows more clearly that Clifford codes extend
Stabilizer codes.

Definition 3. Let G be an abstract error group and φ an irreducible, faithful
character of degree |G : Z(G)| 12 . Let ρ be a unitary representation of G affording
φ, N � G, and χ ∈ Irr(N) such that 〈φ, χ〉N �= 0. A Clifford Code, denoted by
(G, ρ, N, χ), is the image of the orthogonal projector

P =
χ(1)
|N |

∑
n∈N

χ(n−1)ρ(n).

In case that N is abelian, the Clifford code is called an stabilizer code (indeed,
this definition coincides with Definition 2).

Since we are interested in Clifford codes that are not stabilizer codes, in what
follows, we will consider only Clifford codes (G, ρ, N, χ) where N is nonabelian.

In Theorem 3 in [19] a characterization of those Clifford codes (G, ρ, N, χ)
that are stabilizer codes was given. It was assumed that Z(G) ≤ N , but this
condition is not very restrictive because it was proved in Lemma 4 in [19]) that
every Clifford code (G, ρ, N, χ) can be also defined over the normal subgroup
NZ = NZ(G).

Theorem 7. Suppose that Z(G) ≤ N . A Clifford code (G, ρ, N, χ) is an stabi-
lizer code if and only if χ2(1) = |N |/|A| for some A ∈ A, where A is defined
by:

A = {A ≤ Z(θ) : A � G, Z(G) ≤ A, A abelian}.

Since abstract error groups are groups of central type, some properties of groups
of central type can be related to properties of Clifford codes defined over them.
Groups of central type can be described by means of fully ramified characters.
Some useful properties of this type of characters are summarized in Proposition
4.2 of [15].



64 S. González, C. Mart́ınez, and A.P. Nicolás

Definition 4. Let N � G and suppose χ ∈ Irr(N). Then χ is fully ramified in
G if χG = eθ for some θ ∈ Irr(G) with e = |G : N |1/2. Dually, θ ∈ Irr(G) is
fully ramified over N if θN = eχ for some χ ∈ Irr(N) with e = |G : N |1/2.

Proposition 2. Let N �G, χ ∈ Irr(N) and φ ∈ Irr(G) such that 〈φ, χ〉N �= 0.
Then the following are equivalent:

1. χ is fully ramified in G.
2. φ is fully ramified over N .
3. φ vanishes off N and φN is a multiple of χ.
4. φ vanishes off N and φ(1) = |G : N |1/2χ(1).

In particular, a finite group G with a faithful, irreducible character φ is an
abstract error group if and only if φ is fully ramified over Z(G), and Z(G) is
cyclic.

Proposition 3. Let Q be a Clifford code with data (G, ρ, N, χ). The character
χ is fully ramified in T (χ).

Corollary 1. Let Q be a Clifford code with data (G, ρ, N, χ), then Z(θ) = Z(χ)
and ker(θ) = ker(χ), where θ ∈ Irr(T (χ)) with 〈θ, χ〉N �= 0 and 〈φ, θ〉T (χ) �= 0.

Corollary 1 establishes that Z(θ) = Z(χ) ≤ N and if A = {A ≤ Z(θ) : A � G,
Z(G) ≤ A, A abelian}, then A ∈ A implies that A ≤ N .

Theorem 8. Let χ ∈ Irr(N) and A ∈ A, χ is fully ramified over A if and only
if χ2(1) = |N : A|.

The following characterization of Clifford codes which are stabilizer codes, and
that improves Theorem 7, can be proved.

Corollary 2. A Clifford code (G, ρ, N, χ) is an stabilizer code if and only if χ
is fully ramified over Z(χ) and Z(χ) is a normal abelian subgroup of G.

Notice that if the Clifford code (G, ρ, N, χ) is an stabilizer code, then the group
N/kerχ is of central type. In fact, the character χ̂ defined by χ̂(g kerχ) = χ(g)
for all g ∈ G is a faithful irreducible character of N/kerχ (see Lemma 2.22 in
[16]). By Lemma 2.17 of [16], we know that Z(N/kerχ) = Z(χ)/kerχ is a cyclic
group. Since χ is fully ramified over Z(χ), it follows that

χ(1) = χ̂(1) = |N : Z(χ)| = |N/kerχ : Z(N/kerχ)|,

that is, χ̂ is fully ramified over Z(N/kerχ). We have proved the following result:

Corollary 3. Let Q be a Clifford code with data (G, ρ, N, χ). If Q is an stabilizer
code, then the group N/kerχ is of central type.
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3 Codes over Direct Products

Definition 5. A block code C of length n over a group G is a group code if C is
a subgroup of the direct product Gn. If C is a normal subgroup of Gn, the group
code is called normal.

Given a group code C of length n and any 1 ≤ k ≤ n, the output group Gk is
defined as the set of all g ∈ G that actually occur as k-component ck of some
code sequence c ∈ C, that is Gk = πk(C), where πk : Gn → G is the canonical
projection. Usually Gk = G, but it is possible to obtain proper output subgroups,
i. e. Gk < G. The group code C can be seen as a subgroup of the direct product
W =

∏n
k=1 Gk, which is called output space.

It can be proved (see Theorem 4 of [11] for details) that if C is a normal
code such that the output space W =

∏
Gk is nonabelian, then its minimum

Hamming distance is dH(C) = 1. This is due to the fact that the commutator
subgroup W ′ =

∏
G′

k is nontrivial and thus it can be found a sequence with
Hamming weight 1. That is, the best correcting properties are obtained when
the output space is an abelian group. This seems also to be the case in the
quantum context.

If we want to construct Clifford codes over the direct product of several copies
of an abstract error group H , the first problem that we find is that the direct
product Hn is not an abstract error group. However it is possible to obtain an
abstract error group as a quotient of Hn.

Theorem 9. Let H be an abstract error group and φ ∈ Irr(H) a faithful, fully
ramified character over Z(H), then G = Hn/ker(φ×· · ·×φ) is an abstract error
group.

Let G be the abstract error group of the previous theorem. Let Q be a Clifford
code with data (G, ρ, N, χ). We note that if π : G → G/Z(G) is the canonical
projection and S ⊆ G, then the image π(S) ⊆ H̄n can be seen as a block code
of length n over H̄ = H/Z(H). Given an element g ∈ G, its Hamming weight
ωH(g) can be defined by ωH(g) = ωH̄(π(g)). It is easy to verify that this concept
is well defined.

An error ρ(g), g ∈ G is detectable if and only if g /∈ T (χ)− Z(χ). It is clear
that if the minimum Hamming weight of T (χ)−Z(χ) is d, then every error with
Hamming weight less than d can be detected. This minimum Hamming weight
depends on the properties of the output space.

Theorem 10. Let (G, ρ, N, χ) be a Clifford code and π : G → G/Z(G) the
canonical projection. Let Wπ(N) be the output space of the group code π(N),
which is supposed to be nonabelian, and let W ′

π(N) be its commutator group. If
π−1(W ′

π(N))
⋂

T (χ)−Z(χ) �= ∅, then minimum the Hamming weight of T (χ)−
Z(χ) is one.

A necessary condition for a Clifford code (G, ρ, N, χ) to detect all the errors with
Hamming weight one is that N ′ ≤ Z(χ), since if N ′ � Z(χ) then π−1(W ′

π(N))
⋂

(T (χ)− Z(χ)) �= ∅.
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Good candidates of abstract error groups able to detect more than one error
are nilpotent groups of class 2.

Proposition 4. If G is an abstract error group that is nilpotent of class 2, then
all Clifford codes (G, ρ, N, χ) satisfy N ′ ≤ Z(χ).

Notice that if G is an abstract error group nilpotent of class 2, then the error
group G/Z(G) is abelian, and any Clifford code with data (G, ρ, N, χ) is also a
Clifford code with respect to Z(N) (see Theorem 6 in [18]). Hence, such a code
is an stabilizer code.

If a Clifford code is able to detect all errors with Hamming weight one then a
sufficient and needed condition to be stabilizer is found. Some previous results
are used.

Theorem 11. Let Q be a Clifford code with data (G, ρ, N, χ). If Q detects all
errors with Hamming weight one, the group N/kerχ is nilpotent of class 2.

Lemma 2. Let (G, ρ, N, χ) be a Clifford code which detects all errors with Ham-
ming weight one. If χ is faithful, then (G, ρ, N, χ) is an stabilizer code.

Lemma 3. Let (G, ρ, N, χ) be a Clifford code which detects all errors with Ham-
ming weight one. Then χ is fully ramified over Z(χ).

Finally, using Corollary 2 we get the wanted characterization.

Theorem 12. Let (G, ρ, N, χ) be a Clifford code which detects all errors with
Hamming weight one. Then (G, ρ, N, χ) is an stabilizer code if and only if Z(χ)
is normal abelian in G.

Unfortunately, we do not known any characterization of non-stabilizer Clifford
codes that can detect errors with Hamming weight at least one. In order to
deal with this problem we tried to find abstract error groups G with a normal
subgroup N � G such that N ′ ≤ Z(χ), where χ ∈ Irr(N) is an irreducible
component of the restriction ρN (remember that ρ is an irreducible character
of G such that ρ(1) = 1G : Z(G)|1/2). Such groups can produce examples of
non-stabilizer Clifford codes.

Only 2-groups and direct products of 2-groups with cyclic groups of prime
order different from 2 satisfy this property.

In all cases, the inertia subgroup T (χ) = N and the quasi-kernel Z(χ) is an
abelian subgroup of N , which is not normal in G. The subgroup N is nilpotent of
class 2, the index |N : Z(χ)| = 4 and the dimension of the Clifford code Q is 2.

So, we can reduce our study to abstract error 2-groups. Let us suppose that
G is an abstract error 2-group as in the previous section, that is, its error group
G/Z(G) is a direct product of several copies of another error group H . In all
cases, the quotient group G/Z(G) is isomorphic to the group D8×D8. However,
for these codes, minimum Hamming weight is one.

It seems that we can not get better correcting properties by using Clifford
codes instead of stabilizer codes.
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Notes and Comments. As it was mentioned in the abstract results in the first
chapter of this survey were obtained by E. Couselo et al. in [5], while results
in the second chapter were obtained by M. Grassl et al. in [13]. Our aim here
was to give an insight of algebraic methods, mainly in ring and group theory, to
both, classic and quantum error correcting codes.
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Abstract. In this paper we apply different techniques of information
distortion on a set of classical books written in English. We study the
impact that these distortions have upon the Kolmogorov complexity and
the clustering by compression technique (the latter based on Normalized
Compression Distance, NCD). We show how to decrease the complexity
of the considered books introducing several modifications in them. We
measure how the information contained in each book is maintained using
a clustering error measure. We find experimentally that the best way to
keep the clustering error is by means of modifications in the most fre-
quent words. We explain the details of these information distortions and
we compare with other kinds of modifications like random word distor-
tions and unfrequent word distortions. Finally, some phenomenological
explanations from the different empirical results that have been carried
out are presented.

1 Introduction

A natural measure of similarity assumes that two objects x and y are similar if
the basic blocks of x are in y and vice versa. If this happens we can describe
object x by making reference to the blocks belonging to y, thus the description
of x will be very simple using the description of y.

This is what a compressor does to code the concatenated xy sequence: a search
for information shared by both sequences in order to reduce the redundancy of
the whole sequence. If the result is small, it means that a lot of information
contained in x can be used to code y, following the similarity conditions described
in the previous paragraph. This was formalized by Cilibrasi and Vitányi [1],
giving rise to the concept of Normalized Compression Distance (NCD), which is
based on the use of compressors to provide a measure of the similarity between
the objects. This distance may then be used to cluster those objects.

The mathematical formulation is as follows

NCD(x, y) =
max{C(xy)− C(x), C(yx) − C(y)}

max{C(x), C(y)} , (1)

where C is a compression algorithm, C(x) is the size of the C-compressed version
of x, and C(xy) is the compressed size of the concatenation of x and y. NCD

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 69–79, 2008.
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generates a non-negative number 0 ≤ NCD(x, y) ≤ 1. Distances near 0 indicate
similarity between objects, while distances near 1 reveal dissimilarity.

The theoretical foundations for this measure can be traced back to the notion
of Kolmogorov Complexity K(X) of a string X , which is the size of the shortest
program able to output X in a universal Turing machine [2,3,4]. As this function
is incomputable due to the Halting problem [5], the most usual estimation is
based on data compression: C(X) is considered a good upper estimate of K(X),
assuming that C is a reasonably good compressor for X [1].

In our work we apply this distance to text clustering [1,6], with the aim to
study the way in which the method is influenced by different types of informa-
tion distortion. A percentage of words of the books is distorted by using two
different word-replacing techniques, which eventually change the amount of in-
formation remaining in the books, their (estimated) Kolmogorov Complexity,
and the clustering error obtained using the NCD.

Other authors [7] have given a theoretical and experimental basis for ex-
plaining the NCD-clustering behavior of elements which have been transmit-
ted through a symmetric-channel, i.e. which have been perturbed by a certain
amount of uniform random noise. We go a step further by considering a wider
spectrum of information distortions, within the framework of a complete exper-
imental setup on a selected text corpus for which an ideal clustering is already
known.

The main contributions of this paper are
– New insights for the evaluation and explanation of the behavior of the NCD-

driven clustering method,
– a technique to reduce the Kolmogorov complexity of the books while pre-

serving most of the relevant information,
– experimental evidence of how to fine-tune the NCD so that better clustering

results are obtained.
This paper is structured as follows. Section 2 describes the distortion/word-
replacement method, the clustering assessment and the Kolmogorov Complexity
estimation. Section 3 explains the experimental setup and gathers the results of
the experiments. Section 4 summarizes the conclusions and describes ongoing
research.

2 The Distortion Methods

We want to study the effect of information distortion on NCD-driven text clus-
tering by replacing words from the documents in different manners. After the
distortion has been performed, we execute the NCD clustering method on each
distorted test set and we quantitatively measure the error of the clustering re-
sults obtained. Finally, the Kolmogorov complexity of the distorted documents
is estimated, based on the concept that data compression is an upper bound of
the Kolmogorov complexity.
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2.1 Replacement Methods

We use six different replacement methods, which are pairwise combinations of
two factors: word selection and substitution method.
– Word selection: we incrementally select a percentage p, and we eliminate

the p-most/least/randomly frequent words in English from the books. We
estimate the frequencies of words in English using the British National
Corpus [8].

– Substitution method: each character of the word that is distorted according
to the word-frequency, is substituted by either a random character or an
asterisk.

Note that all six combinations maintain the length of the document. This is
enforced to ease the comparison of the Kolmogorov Complexity among several
methods.

2.2 Assessing the Clustering

The CompLearn Toolkit [6] implements the clustering method described in [1].
The clustering method comprises two phases. First, the NCD matrix is calcu-
lated using the LZMAX compressor, a Lempel-Ziv-Markov chain Algorithm [9].
Second, the NCD matrix is used as input to the clustering phase and the so-
called dendrogram is generated as an output. A dendrogram is an undirected
binary tree diagram, frequently used for hierarchical clustering, that illustrates
the arrangement of the clusters produced by a clustering algorithm.

In Fig 1 we can observe one of the dendrograms that we have obtained. Each
leaf of the dendrogram corresponds to a document, and has a label that starts
with the acronym of the author, and ends with the acronym of the title. For
example, the node with label AP.AEoM corresponds to the document An Essay
on Man by Alexander Pope.

Once the CompLearn Toolkit is used to cluster the documents, we need to
quantitatively evaluate the error of the dendrograms obtained. We define the
distance between two nodes as the minimum number of internal nodes needed
to go from one to the other. For example, in Fig 1 the distance between the
nodes with label WS.H and WS.AaC would be one, since both nodes are con-
nected to the same internal node. We use this concept to measure the error of a
dendrogram.

We add all the pairwise distances between nodes starting with the same string,
i.e. we add all the pairwise distances between the documents by the same author.
For example, in Fig 1 there are three nodes which label starts with AP , thus we
add the distance between AP.AEoC and AP.AEoM , between AP.AEoC and
AP.TRotLaOP , and between AP.AEoM and AP.TRotLaOP . We repeat this
procedure with the nodes of each author, obtaining a certain total quantity. The
bigger the measure, the worse the clustering.

The ideal dendrogram would be a clustering where all the documents by the
same author are grouped together. The clustering error corresponding to the
ideal dendrogram is 14 for these documents. Note that in Fig 1 the node with
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S(T)=0.919664
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EAP.TR

WS.AaC

NM.HoFaotAoI

Fig. 1. Example of dendrogram

label NM.TP is clustered incorrectly. Thus, the clustering error corresponding
to this dendrogram is 16 instead of 14.

The fact that this measure does not explicitly take into account pairwise dis-
tances between documents that should not be clustered together is implicitly
taken into account due to the finite neighborhood of each node (three nodes in
case of a dendrogram). In other words, the erroneous placement of a document
near a document to which it is not related, reduces the number of nearby loca-
tions in which related nodes can be placed. This increases the distance between
related nodes and has a negative effect upon the quality of the cluster.

3 Experiments and Results

The experiments have been designed to evaluate the impact of information dis-
tortion on NCD-driven text clustering by incrementally replacing words from
the documents in different manners. We measure the error of the clustering in
presence of distortion and compare it with two baselines: the ideal clustering,
and the non-distorted NCD-driven clustering.

We have applied the NCD clustering method over a set of fourteen classical
books written in English. We have two books by Agatha Christie: The Secret
Adversary, and The Mysterious Affair at Styles. Three books by Alexander Pope:
An Essay on Criticism, An Essay on Man, and The Rape of the Lock, an heroic-
comical Poem. Two books by Edgar Allan Poe: The Fall of the House of Usher,
and The Raven. Two books by Miguel de Cervantes: Don Quixote, and The
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Exemplary Novels. Three books by Niccolò Machiavelli: Discourses on the First
Decade of Titus Livius, History of Florence and of the Affairs of Italy, and
The Prince. Two books by William Shakespeare: The tragedy of Antony and
Cleopatra, and Hamlet.

We show the results of clustering the classical books when the six different
replacement methods are used to preprocess them. Every figure plots the clus-
tering error or the complexity of the books vs. a certain percentage of replaced
words. The curve with asterisk markers represents the results obtained when
the characters of the words are replaced with asterisks. The curve with square
markers corresponds to the results obtained when random characters are used
to replace the characters of the distorted words. Furthermore, two constant lines
may appear in each figure. One corresponds to the measure in the ideal cluster-
ing and the other corresponds to the non-distorted NCD-driven clustering. The
former is 14, the latter is 18.

In every graph, the value on the horizontal axis corresponds to the fraction
of the total BNC frequency that is associated to the words being distorted.
Note that even when all the words included in the BNC are replaced from the
texts, the words that are not included in the BNC remain in the documents. For
example, in the book Don Quixote by Miguel de Cervantes, words like Dulcinea
or Micomicona, the names of two characters, remain in the documents when all
the words of the BNC are distorted from the documents.

The clustering error vs. the percentage of replaced words is presented in
Figs 2, 4 and 6, which show the results for the X%-most/randomly/least fre-
quent words respectively. Figs 3, 5 and 7 show the evolution of the complexity
of the documents as a function of the same percentages.

In Fig 2 we observe that when the characters of the words are replaced with
random characters the clustering error increases. When the characters are re-
placed with asterisks the clustering error remains stable. If we observe the curve
with asterisk markers at 80% and 90%, we can see that the results are better
than those obtained for the non-distorted documents, although they are not as
good as those that would correspond to the ideal clustering.

Looking at Fig 3, we realize that the complexity of the documents rises when
the substitution method is based on random characters. However, when it is
based on asterisks the complexity of the documents decreases, because a great
amount of characters from the documents are replaced with the same charac-
ter, which increases the redundancy of the document and thus makes it more
compressible.

Fig 4 shows the mean and the standard deviation of the results obtained in
ten different experiments. The clustering error increases when random character
substitution is applied. However, when asterisk substitution is applied the error
keeps stable until 60%. From 60% to 100% the error increases. Comparing Figs 2
and 4 we observe that better results are obtained when we start disturbing the
most frequent words. This makes us think that the frequency of the replaced
words could affect the clustering.
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Fig. 2. Clustering error. Words sorted in decreasing order of frequency.
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Fig. 3. Complexity of the documents. Words sorted in decreasing order of frequency.

The mean and the standard deviation of the complexity are presented in
Fig 5, although the standard deviation is difficult to visualize due to the fact
that its absolute value is very small as compared to the mean. Note that this
graph decreases faster than the graph which represents the complexity when we
start replacing the most frequent words, see Fig 3.

When the characters of the words are replaced with random characters, as
shown in Fig 6, the clustering error increases faster than before, see Figs 2
and 4. When the words are replaced with asterisks the clustering error increases
rapidly and then remains stable. This phenomenon could be due to the fact
that when we start replacing the least frequent words, we replace precisely those
words which carry the most information in terms of clustering compression.

When the substitution method is based on random characters, as shown in
Fig 7, the complexity of the documents grows sharply compared to the evolution
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Fig. 4. Clustering error. Words sorted randomly (mean and standard deviation).
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Fig. 5. Complexity of the documents. Words sorted randomly (mean and standard
deviation).

observed in Figs 3 and 5. When the substitution method is based on asterisks the
complexity of the documents decreases sharply as compared to the same figures.
This is due to the fact that when we start disturbing the X%-least frequent
words, lots of words are required to achieve the 10% of the BNC frequencies.

In order to give a better comparison we illustrate in Fig 8 the clustering error
obtained when the words are replaced with asterisks for the three different word
selections: p-most/least/randomly frequent words in English. We observe that
the better results are obtained when we start distorting the p-most frequent ones,
and the worst results are obtained then we start distorting the p-least frequent
ones. When we select randomly the words the results remain between the others.
These facts empirically demonstrate that the frequency of the words affects the
clustering results when we cluster these books using the CompLearn Tool with
the LZMAX compressor.
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Fig. 6. Clustering error. Words sorted in increasing order of frequency.
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Fig. 7. Complexity of the documents. Words sorted in increasing order of frequency.

In an analogous way, the complexity of the documents for the three word
selection techniques is depicted in Fig 9. Comparing Figs 8 and 9 we observe
that document complexity and clustering error are negatively correlated. Thus,
the best clustering results are obtained using the word selection that reduces the
least the complexity of the documents.

To summarize, when random characters are used to replace the words in the
text preprocessing phase, the error of the clustering method increases with the
percentage of words removed, independently of the word selection used. When
the words are replaced using asterisks the clustering error is always smaller
than the one obtained when using random characters. Furthermore, the best
clustering results are obtained when we select the most frequent words, and the
substitution method is based on asterisks. In this case, for 80% and 90%, the
results obtained from the original texts are improved. Moreover, comparing all
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Fig. 8. Clustering Results. Asterisk each character of the replaced word.
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Fig. 9. Complexity of the documents. Asterisk each character of the replaced word.

the figures, it can be observed that the frequency of the removed words has an
influence over the clustering error.

4 Conclusions and Discussion

We have applied the clustering method detailed in [1] to cluster several English
classical books. We have studied how the clustering method is affected by dif-
ferent types of information distortion. In order to do that, we have measured
the clustering error vs. the percentage of words distorted. The Kolmogorov com-
plexity of the books has been estimated as well, to study the impact of the
information distortion on the complexity of the documents.
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Although several distortion methods have been designed, in this paper we
have only considered those which maintain the initial length of the books to
ease the comparison of the Kolmogorov complexity among them.

Three main contributions have been presented in this paper. First, we have
made an empirical evaluation of the behavior of the NCD-driven clustering
method, and the way in which an incremental modification of the books af-
fects the clustering error. Second, we have presented a technique which re-
duces the Kolmogorov complexity of the books while preserving the relevant
information therein. Third, we have observed experimental evidence of how to
improve the NCD-clustering method by preprocessing the books in a certain
manner.

The experimental results show how the clustering error is maintained even
when the information contained in the documents is reduced progressively by
replacing the words using a special character. We have found that replacing the
most frequent words gives us the better clustering results. This method main-
tains the clustering error with very high values of distortion, and even improves
the non-distorted NCD-driven clustering when the 80%-90% of the words are
replaced from the documents, see Fig 2. This means that we are replacing ex-
actly non-relevant parts of the books. This makes it easier for the compressor
to estimate the complexity of the documents in an accurate manner. Therefore,
the compressor obtains more reliable similarities.

Other techniques, such as randomly selecting the words to replace, or replac-
ing the least frequent ones have been studied and analyzed. Despite the com-
plexity of the documents being reduced too (see Figs 5, and 7), the clustering
error increases faster (see Figs 4, and 6). Thus, the information that has been
replaced is relevant in the clustering process, and consequently we are losing
important information. Therefore, the similarities among the documents are not
being correctly measured.

In the future, we plan to work in several ways to study the observed behav-
ior in other textual repositories, like scientific documentation, or genome-based
repositories. However, the NCD-based clustering is a general technique so it is
possible to use other kinds of sources, such as, music or video. In these domains
it would be necessary to analyze how the distortion method could be designed.
Other well-known compression algorithms, like PPMZ, BZIP2 or GZIP, will be
analyzed to evaluate if the complexity estimation affects the clustering behavior
as much as it does in other NCD-driven experiments [10]. Finally, we will apply
these techniques in other areas like Information Retrieval.
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Abstract. We survey some recent work on codes based on bipartite
expander graphs. The code symbols are associated with the branches and
the symbols connected to a given node are restricted to be codewords in
certain constituent codes (e.g. Reed–Solomon codes). This class turn out
to contain some exellent codes. We give results on the parameters of the
codes and methods for their encoding. We also analyze the performance
under iterative decoding, partly based on a result on cores in random
graphs.
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Abstract. We describe an operation to dynamically adapt the structure
of the Tanner graph used during iterative decoding. Codes on graphs–
most importantly, low-density parity-check (LDPC) codes–exploit ran-
domness in the structure of the code. Our approach is to introduce a
similar degree of controlled randomness into the operation of the
message-passing decoder, to improve the performance of iterative decod-
ing of classical structured (i.e., non-random) codes for which strong code
properties are known. We use ideas similar to Halford and Chugg (IEEE
Trans. on Commun., April 2008), where permutations on the columns
of the parity-check matrix are drawn from the automorphism group of
the code, Aut(C). The main contributions of our work are: 1) We main-
tain a graph-local perspective, which not only gives a low-complexity,
distributed implementation, but also suggests novel applications of our
work, and 2) we present an operation to draw from Aut(C) such that
graph isomorphism is preserved, which maintains desirable properties
while the graph is being updated. We present simulation results for the
additive white Gaussian noise (AWGN) channel, which show an improve-
ment over standard sum-product algorithm (SPA) decoding.

1 Introduction

Inspired by the success of iterative decoding of LDPC codes, originally intro-
duced by Gallager [1] and later rediscovered in the mid 1990’s by MacKay
and Neal [2], on a wide variety of communication channels, the idea of itera-
tive, soft-decision decoding has recently been applied to classical algebraically
constructed codes in order to achieve low-complexity Belief Propagation decod-
ing [3,4,5]. Both Reed-Solomon and Bose-Chaudhuri-Hocquenghem (BCH) codes
have been considered in the context of iterative decoding. Certain algebraically
constructed bipartite graphs are known to exhibit good code properties, such
as large minimum distance and a non-trivial automorphism group. However,
these typical ‘classical properties’ do not necessarily lend themselves well to
modern graph-based coding theory. Factors which influence the performance of
iterative, soft-decision decoders are pseudo-codewords [6], stopping and trapping
sets [7,8], sparsity, girth, and degree distributions [9]. Structural weaknesses of
graphical codes are inherent to the particular parity-check matrix, H , which
can be said to implement the code in the decoder. This matrix is a non-unique

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 82–94, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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(n − k)-dimensional basis for the null space of the code, C, which, in turn, is a
k-dimensional subspace of {0, 1}n. Although any basis (for the dual code, C⊥)
is a parity-check matrix for C, their performance in decoders is not uniform. In
this work, we assume that H is of full rank and in ‘standard’ [ I |P ]-form, where
I is the identity matrix.

We propose a class of adaptive decoders which facilitate message-passing on
classical linear codes, by taking advantage of (non-trivial) graph structure. It
is well known that H can be mapped into a bipartite (Tanner) graph, TG(H),

which is described by its adjacency matrix,
(

0 H
HT 0

)
. With H being in stan-

dard form, a specific information set (on the codeword positions) is implied. We
will refer to bit nodes (i.e., columns of H) corresponding to I and P as ‘parity’
and ‘information’ nodes, respectively,1 and rows of H correspond to ‘constraint’
(check) nodes. Using a localized, low-complexity graph edge-operation, we up-
date the parity-check matrix, but still stay within the automorphism group of
the code, Aut(C). Thus, the graph update rule can be viewed as a particular rela-
belling (isomorphism) of the bit nodes. Furthermore, by selectively or randomly
shifting sensitive substructures (e.g., short cycles, or weight-1 nodes) within the
graph, we aim to influence the flow of extrinsic information through TG(H) in
a way helpful to the decoding process.

In a recent paper by Halford and Chugg, “random redundant iterative de-
coding” is achieved by applying permutations drawn at random from Aut(C)
[5]. Rather than applying these permutations to H , the same effect is achieved
by permuting the soft input vector. While their strategy is perceived to be a
series of global updates, our approach achieves a similar effect by using only
local updates on TG(H). In our characterization of locality, we assume that an
edge can not ‘see’ beyond a radius of a constant number of edges. Similarly to
[5], permutations can be drawn from a precomputed list input to the decoder.
However, our distributed approach also allows us to dispense with precompu-
tation, to realize a completely distributed and local graph update rule, which,
nevertheless, keeps the series of graphs generated within Aut(C).

2 Edge Local Complementation

The operation of edge local complementation (ELC) [10,11,12], also known as
Pivot, is a local operation on a simple graph. Fig. 1(a) shows GNu∪Nv , the
local subgraph of a bipartite graph induced by nodes u, v, and their disjoint
neighborhoods which we denote N v

u � Nu\{v} and N u
v � Nv \{u}, respectively.

Pivot on a bipartite graph is described as the complementation of edges be-
tween these two sets; ∀ v′ ∈ N v

u , u′ ∈ N u
v , check whether edge (u′, v′) ∈ G, in

which case it is deleted (otherwise, it is created). Finally, the edges adjacent to u
and v are swapped. As such, Pivot updates the set of constraints (rows of H) by
changing the edges of TG(H), whereas nodes are invariant. The complexity of the
graph-based algorithm is O(deg(u) deg(v)). The fact that Pivot amounts to row
1 Note that these terms refer to the generator matrix of the code, GC �

[
P T | Ik

]
.
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(a) (b)

Fig. 1. Pivot (ELC) on edge (u, v) of a bipartite graph. Doubly slashed links mean the
edges connecting two sets have been complemented.

additions assures that the code is preserved. In the following, we use the notation
Gi to denote a graph G that has been subject to i Pivots (similarly for Hi).

Consider the simple, n-node bipartite graph described by G =
(

0 P
PT 0

)
. This

graph is related to TG(H) by the abstraction of degree-1 parity nodes, as shown
in Figs. 2(a) - 2(b). Keeping track of the bipartition of G (which changes due to
the swap), means we can obtain an associated parity-check matrix, H1, for C by
mapping grey nodes onto rows (constraint nodes), and white nodes to columns
(bit nodes), with non-zero entries according to edges. While the mapping of bit
nodes must follow the prescription of the labelling of G (i.e., the code), the
ordering of rows is arbitrary.

The local application of Pivot has the global effect of row additions on the asso-
ciated H , thus preserving the bipartiteness and vector space (i.e., C) [12]. Consider
again Fig. 1, where we choose u to be a constraint node, and v a bit node. With
this setup, Pivoting on edge (u, v) is equivalent to adding ‘row u’ to rows u′ ∈ N u

v

(as dictated by the non-zero entries of ‘column v’). Since H is in standard form, an
immediate effect of Pivoting on some edge (c, p) is that the edges adjacent to in-
formation node, p, are swapped with that of the degree-1 parity node adjacent to
the constraint node, c, as seen in Fig. 2 (b,e). As opposed to [5], we are permuting
H , whereas the soft input vector remains invariantly connected to (the bit nodes
of) TG(H). The indices of Fig. 2 show how the order of the soft input vector is
preserved. Extrinsic information is lost on edges deleted in the local complemen-
tation. However, SPA update rules are such that these messages remain stored in
adjacent bit nodes as a posteriori probabilities (APPs) [13].

As can be readily verified, although Pivot preserves the code, it can have a
negative impact on parameters of its implementation, H , as a decoder. Edges
complemented are at distance 2 from (u, v), so for a typical sparse, girth-6 graph,
many 4-cycles result, and density increases [14]. Pivot does not generally preserve
graph isomorphism (structure), so the operation will often given us a different
structure in the (Pivot) orbit of G [15]. The matrices Hi in this orbit are the
set of structurally different parity-check matrices for the same code, as discussed
in the Introduction. We briefly mention that all information sets of C may be
enumerated by traversing this orbit of G [11].
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(a) G (b) TG(H) (c) Structure is a cube

(d) Pivot (0, 4) (e) Pivot (0, 4) (f) ...relabelled cube

Fig. 2. (a) through (c) are three equivalent representations of the (8, 4) extended Ham-
ming code. (d) through (e) show the corresponding representation after Pivot is applied
to edge (0, 4). Fig. 5 shows the parity-check matrices of (b) and (e), respectively.

2.1 Iso-Pivot

In this section we describe an application of Pivot to preserve key features of
the graph, to remedy the drawbacks enumerated in the previous section. We
define Iso-Pivot as a sequence of Pivot operations over which (global) graph
isomorphism is preserved. Such an operation will be in Aut(C), in that its action
has the appearance of a relabelling on the nodes of a graph, or–equivalently–a
permutation on the columns of a matrix (H). If there exist sequences of Pivots
which preserve the structure of G, then Aut(C) must be non-trivial. Isomorphism
is a certificate on the properties of the resulting graphs (matrices) used during
decoding; that these remain the same as for the initial G (H), which can be
assumed to have been carefully selected. The relabelling, however, alters the
flow of messages in TG(H), i.e., which nodes are exchanging information. Note
in particular how, after the Iso-Pivot in Fig. 2(f), node 4 is no longer part of a
4-cycle (whereas node 0 now is).

In the following, we derive three requirements for Pivot being an isomorphism.

A. Most generally, to have an isomorphism, the number of edges in G must
remain invariant under Pivot. Pivot is a local operation, so we only have to
consider the subgraph GNu∪Nv . Edge complementation can then be achieved
by complementing the corresponding deg(u) × deg(v) submatrix, Huv. De-
fine wt(H) as the weight (number of non-zero entries) of H . In order for
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(a) (b)

Fig. 3. Pivot on (0, 1) is (A) edge-count preserving and (B) a local isomorphism, but
not (C) a global isomorphism due to node 6. This node is not local to the Pivot edge.

wt(Huv) = wt(Huv), at least one of the dimensions must be an even num-
ber, and wt(Huv) must equal uv/2. If these conditions are met, we define
the Pivot operation as edge-count preserving.

B. More specifically, we define a local isomorphism as an operation which pre-
serves the structure of subgraph GNu∪Nv , without making any assumptions
on the overall (global) structure of G. We then define the Pivot operation
to be local Iso-Pivot iff Huv can be recovered from Huv by row/column
permutations only. Fig. 3 shows a small example.

C. Finally, most specifically, we say that Pivot is a (global) Iso-Pivot iff H can
be restored from H1, using only row/column permutations, considering the
entire matrix.

These requirements lead to the following observation,

C ⇒ B ⇒ A.

In the following, we will consider global isomorphisms only, and we will refer to
such sequences as as simply being Iso-Pivot operations, or sequences.

2.2 Iso-Orbit

The definitions of Iso-Pivot are naturally extended to the case where a single
Pivot can not by itself be an isomorphism. Consider, for instance, a girth-6
graph. Here, the local neighborhood (of any edge) must be empty, and, after a
single Pivot, this neighborhood becomes a complete (bipartite) (sub)graph at
distance 2 from the Pivot edge (all 4-cycles). This violates requirement A, and
the resultant graph can not be isomorphic to the initial one–neither locally, nor
globally.2

In the general case, Iso-Pivot is described as an ordered set of d edges on
which Pivot must be applied to achieve an isomorphism. This is referred to
as a d-iso sequence (or, a length-d iso sequence). The set of all isomorphisms
of G (reachable via Iso-Pivot, for d ≥ 1) is called the Iso-Orbit of G, which

2 This is also evident simply from the change in girth.
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corresponds to a subset of Aut(C). Pivot can be used, in a preprocessing stage, to
recursively search for Iso-Pivot sequences. For each such relabelling of G, we keep
the corresponding iso sequence leading to it. Since Pivot is reversible, identical
isomorphisms may be found via sequences of different length, and involving
different edges, where certain operations cancel each other out. As such, for each
unique labelling, we keep only the minimum length sequence in the Iso-Orbit.

From a decoding perspective, row permutations of H give the same TG(H).
By canonising the rows of H (in our case, sorting according to decimal value
of the binary rows), we ensure that the Iso-Orbit contains only non-trivial iso-
morphisms of G. The complexity of this search is O(n|Aut(C)|), where G has n
nodes, so for strongly structured (and large) graphs it may be necessary to bound
the recursion with a maximum depth, dmax. This possibly partial Iso-Orbit is
then simply referred to as the d-Iso-Orbit of G.

2.3 Local Iso Criterions

Although the message-passing decoder can be provided with TG(H) and a list of
iso-sequences, to facilitate adaptive decoding, our stated graph local approach
lends itself to ad hoc determination of iso-sequences during decoding. In this
subsection, we describe some 1-iso conditions which ensure that Pivoting on the
single edge (u, v) of G gives an isomorphism of G.

From a local perspective, an edge (u, v) can sometimes determine whether
or not (global) structure will be preserved if it applies a Pivot. This edge may
only examine its local subgraph, GNu∪Nv . In this manner, we alleviate both the
potentially expensive preprocessing stage, as well as the overhead of storing and
permuting a list of sequences. Where a local criterion is satisfied, (u, v) may
remain unaware of the implicit (iso) permutations that occur–except from the
fact that (u, v) remains invariant–hence the term, Pivot.

We define � as the symmetric difference, i.e., for sets A and B, A � B �
(A \B) ∪ (B \A).

Lemma 1. Pivoting on the edge (u, v) of a simple bipartite graph, G, preserves
G up to local graph isomorphism if and only if at least one of the sets N v

u and
N u

v satisfy one of the following conditions, with {α, α′} = {u, v},
– ∃ α, α′ such that Nα′

α = ∅, or
– ∃ α, α′ such that Nα′

α can be partitioned in pairs {wi, w
′
i}, where Nwi�Nw′

i
=

Nα
α′ ∀i, {wi, w

′
i} ∩ {wj, w

′
j} = ∅, i �= j.

Global isomorphism can be ensured by the condition that the subgraphs induced
by Nα′

α and their neighbors, and Nα
α′ and their neighbors, are both bipartite

complete graphs. Less restrictive conditions will also ensure global isomorphism,
depending on the permutation of the vertices of the graph.

Proof. – Either N v
u = ∅, or N u

v = ∅. Let N v
u = ∅. Then Pivot on (u, v) has

the effect of disconnecting v from N u
v , while connecting u to N u

v . The per-
mutation that gives us the isomorphism is σ = (u v). The same permutation
applies when N u

v = ∅.
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Fig. 4. Example of Lemma 1, where α = 0, α′ = 4, w0 = 5, and w′
0 = 6. These graphs

are isomorphic.

– For every wi ∈ Nα′
α , ∃ w′

i ∈ Nα′
α such that Nwi �Nw′

i
= Nα

α′ : The permuta-
tion that gives us the isomorphism is σ = (u v)

∏
(wi w′

i). �

An example of Lemma 1 is found in Fig. 4.
As any individual Pivot operation complements edges local to u and v (i.e., 4-

cycles), we say that 1-iso ‘sequences’ can only exist for graphs of girth 4, or locally
acyclic (tree) graphs for which the first part of Lemma 1 applies. Similar criteria
have been identified for d = 2, but these were not applied in this initial work.

3 Structure of the (8, 4) Extended Hamming Code

The (8, 4) extended Hamming code is a well-suited test case for adaptive de-
coding; it has strong classical properties (large automorphism group and mini-
mum distance), yet for any implementation H it is ill-suited for message-passing
(dense, and many 4-cycles). We acknowledge that this is a toy code, which
presents obvious difficulties in arguing any sense of ‘locality’ of such a small
graph. However, the positive nature of our results show that this code does suf-
fice as motivation for the proposed class of adaptive decoders, and we direct the
reader to the Future Work section of this article.

The associated graph has one structure in its (non-iso) orbit; the cube of Fig.
2(c), meaning that its structure is so strong that any edge of any Gi satisfies
Lemma 1 (is an Iso-Pivot). Starting from G as in Fig. 2(b), with parity-check
matrix in Fig. 5(a), we find the Iso-Orbit of the graph. Grouped by length,
d = 1 to 4, this orbit consists of 12, 30, 12, and 1 isomorphisms, respectively, all

(a) Standard form (b) Pivot (0, 4)

Fig. 5. The (8, 4) extended Hamming code, implemented by its standard form parity-
check matrix (a), and an isomorphism (b)
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resembling a cube. Including the initial labelling, this sums up to 56 structurally
distinct, non-trivial parity-check matrices for the code.3 Necessarily, the 12 1-iso
sequences correspond to the 12 edges of G (P -part of H).

4 Simulation Results

The adaptive decoder has been tested in two instances, and compared against a
SPA decoder using standard flooding scheduling on output y from the AWGN
channel.4 During implementation we made sure that all decoders were allocated
an equal maximum number of iterations (T = 100). In the following description,
we assume an initial syndrome check has failed, so we have a vector to input to
the decoder.5

Due to the symmetry of the (8, 4) code in standard form, we know any Pivot
will preserve isomorphism. Thus, when considering the adaptive decoders pre-
sented and analyzed in the following, the reader is encouraged to think of these
as truly localized (i.e., independent of preprocessing and input lists), as if these
were determined ad hoc. In comparison, Halford and Chugg [5] are applying
(non-local) permutations drawn at random from the full automorphism group
of the code. They also restrict to a cyclic subgroup of Aut(C)–we do not do this.
As discussed, our use of Iso-Pivot naturally gives a subgroup of Aut(C).

The random adaptive decoder (RAD) is a (flooding) SPA decoder, but which
is designed to adapt (via random Iso-Pivot) to another Gi, with regular iter-
ation interval, t. The decoder stops as soon as the syndrome check is satisfied
(valid codeword, though not necessarily the one sent), or when T iterations are
exhausted (detected frame error). In a localized manner, this decoder performs
a random walk (with repetitions) in the Iso-Orbit of G, taking advantage of the
discussed symmetry. As such, the ‘range’–number of matrices available to this
decoder–includes all 56 non-trivial isomorphisms.

The list adaptive decoder (LAD) is an extension of this idea, but where we
apply Iso-Pivot operations from a precomputed list, L ⊆ Iso-Orbit(G). In ad-
dition to the initial labelling, the range of this decoder is D = |L| + 1. A
pool of T flooding iterations is allocated. Graph Gi, 0 ≤ i < D, is allocated
hi = 	(T − I)/(D − i)
 iterations to come to a decoder decision, where I is
the total number of iterations used by previous decoders Gj , j < i. Depend-
ing on T and L, hi may go to 0, so an overall minimum, hmin, should be set.
This means that, although the list L may not be employed in its entirety, we
ensure that the graphs used are doing useful work (more than 1 iteration). This

3 Note that the full automorphism group of this code may be found by row permuta-
tions on these generators; 56 · 4! = 1344 = |Aut(C)|.

4 One flooding iteration consists of the SPA update of all bit (information and parity)
nodes, followed by the update of all constraint nodes.

5 For locality, we emphasize that constraint nodes of TG(H) can be viewed as [n, n−
1, 2] component parity-check codes, which can be computed (checked) concurrently
and distributively. However, a stopping criterion for the whole code is inherently a
global decision.
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(a) Our class of decoders (both RAD and LAD) outperform SPA, both in BER
and FER. Only a small improvement was seen when using the entire Iso-Orbit,
LAD(56).
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Fig. 6. Simulations results on an AWGN channel. Maximum T = 100 iterations used.
t = 10 for RAD, and |L| = 12 for LAD. At least 100 detected and 100 undetected
frame errors were sampled for each Eb/N0 point.
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minium should reflect parameters of the graph and code. Before applying the
next Iso-Pivot from L, Gi compares its local decision to a running optimum kept
in the decoder, and overwrites if a better decoder output is found (in squared
Euclidean distance from y). This comparison is devised to favor valid decoder
states, in that distance measures of detected failures are only considered as long
as no valid state has been found. The LAD does not stop on reaching a valid
decoder state, but continues until “timeout” (T iterations). The final graph,
Gδ, �T/hmin� ≤ δ ≤ D − 1, outputs the optimum decision as the decoder re-
sult. In case no graph found a valid syndrome, the error state nearest to y (of
the δ timeout states) was output. This is in an effort to reduce the bit-error
contribution.

Fig. 6 benchmarks the performance of RAD/LAD against standard SPA and
the optimal maximum likelihood decoder (MLD), in terms of bit-error rate
(BER) and frame-error rate (FER), where an improvement is seen. The LAD
plot is slightly nearer to the optimal MLD plot than the RAD, but the gain is
not significant compared to the complexity tradeoff (Fig. 7). A detailed look at
the (detected and undetected) frame errors, Fig. 6(b), reveals that adaptive de-
coders outperform SPA in terms of detected errors (timeout), where RAD shows
the best gain. The RAD performs a random walk around the 56 sequences in
the Iso-Orbit of G, while, for the LAD, we chose the subset of 12 1-iso sequences
(defined by the 12 edges of the initial G) such that hmin = 	100/13
 = 7.
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Only a small additional gain was achieved by using the full Iso-Orbit. In this
case, we used the same minimum as for the LAD; hmin = 7 iterations. This
means that not all 56 sequences were guaranteed to be used, so we permuted
the order of sequences in L before every decoding instance. As such, in the
cases where the graphs did non-negligible work (i.e., there were channel errors),
on average each graph ran all its hmin iterations. Hence, we may say that 13
random Iso-Pivot operations (sequences) were applied at random from the Iso-
Orbit of G. The simulation ‘LAD(56)’ in Fig. 6(a) demonstrates the benefit of
using the entire Iso-Orbit, albeit slim for this small code.

Fig. 7 shows the complexity (average number of flooding iterations used) of
the decoders, where we observe another improvement of RAD over SPA and
LAD decoding. At high Eb/N0, complexity averages go to 0, which is due to the
majority of received frames satisfying the initial syndrome check (which we do
not count as an iteration). While LAD expectedly uses a higher average number
of iterations, since it does not stop at the first valid syndrome, an interesting
observation is the complexity gain of RAD, which is linked to the reduction in
number of timeouts (detected frame errors–see Fig. 6(b)).

5 Conclusion and Future Work

We have described and tested a class of adaptive iterative decoders, which dy-
namically update the edge-space of the code implementation, TG(H), using
local decisions and operations. Concrete ‘iso-criterions’ are described and math-
ematically proven, and simulations on the AWGN channel show a gain when
using our ideas. Two related instances of our class of adaptive decoders are de-
scribed, where we conclude that, although LAD is slightly better than RAD in
terms of BER, that gain comes at a cost of increased complexity (average num-
ber of iterations used) and loss of locality. Furthermore, RAD outperforms LAD
in terms of FER, which gives an interesting latency reduction.

As Iso-Pivot rotates sensitive substructures in TG(H), we expect a gain in
selectively applying Iso-Pivot based on local convergence assessments (e.g., using
entropy or reliability measures). We mention shifting short cycles away from
unreliable bit nodes–as seen in the cube of Fig. 2. Pivoting adjacent to unreliable
positions also causes these to become temporarily ‘isolated’ in terms of message-
passing (weight-1 node), such that these are set in a ‘listening state,’ rather than
confusing the adjacent nodes with its (presumed) unreliable APP [16,17,3]. In
our scheme, we achieve this effect without the overhead of Gaussian elimination.

Local iso-criterions for d = 2 have been identified, and we are also working
on further generalizations. This is interesting, as, due to the link between Pivot
and 4-cycles, girth-6 graph isomorphisms can not be preserved with less than 2
Pivots. Our results on global isomorphisms indicate that it is not trivial to find
graphs which exhibit a non-empty Iso-Orbit, which simultaneously are good
codes (i.e., sparse and girth greater than 4). A reasonable next step is a more
methodical search through all codes up to some length, yet we are also looking
towards the use of local isomorphisms during decoding. For instance, when girth
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is not preserved (see Section 2.1), cycle-splitting or cycle-reduction comes to
mind–as in the way two 4-cycles can sometimes be split into one 6-cycle.

We are working on a generalized Pivot operation, which does not depend on
the matrix (graph) being in standard form. With this tool, we expect to be able
to compare our results with the realistically sized BCH code of [5]. We anticipate
more significant results where larger Tanner graphs allow more true localization.
Euclidean geometry LDPC codes [18] are also potential, sufficiently structured
candidates for adaptive decoding.

Enforcing a strictly local perspective does present some practical difficulties,
most notably, decoder stopping criterion and optimum decoder state comparison
used in LAD. However, in the context of decoding–as in this work–this does not
present a problem, yet rather suggests potential implementations of the iterated
decoder where the graph nodes are distributed in space and/or time.
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Abstract. We address the concept of “minimal polynomial encoder” for
finite support linear convolutional codes over Zpr . These codes can be in-
terpreted as polynomial modules which enables us to apply results from
the 2007-paper [8] to introduce the notions of “p-encoder” and “minimal
p-encoder”. Here the latter notion is the ring analogon of a row reduced
polynomial encoder from the field case. We show how to construct a
minimal trellis representation of a delay-free finite support convolutional
code from a minimal p-encoder. We express its number of trellis states in
terms of a degree invariant of the code. The latter expression generalizes
the wellknown expression in terms of the degree of a delay-free finite
support convolutional code over a field to the ring case. The results are
also applicable to block trellis realization of polynomial block codes over
Zpr , such as CRC codes over Zpr .

Keywords: polynomial module, finite ring, row reduced, p-generator
sequence, convolutional code, minimal trellis.

1 Introduction

In this paper we consider finite support linear convolutional codes over a finite
ring of the type Zpr , where r is a positive integer and p is a prime integer.
Let Zpr [z] denote, as usual, the ring of polynomials in the indeterminate z with
coefficients in Zpr . Conform [15,16,5,17] we define a finite support convolutional
code of length n over Zpr as a submodule of Zn

pr [z]. In case C admits a basis, that
is, can be written as C = im G(z), then G(z) ∈ Zk×n

pr [z] is called an encoder for
C and C is said to have dimension k. Note that, for the ring case r > 1, there
exist finite support convolutional codes that do not have an encoder. A simple
example over Z4 with n = 1 is the code C = span {2, 1 + z}.

In this paper we are interested in minimal trellis representations for finite
support convolutional codes over Zpr , i.e., trellis representations with a minimal
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number of trellis states. Since decoders, such as the Viterbi decoder, are based
on trellis representations, minimality is a desirable property that leads to low
complexity decoding. Convolutional codes over Zpr have obtained a considerable
amount of attention in the literature because of their relevance to nonbinary
modulation schemes. For n = 1 the class of finite support convolutional codes
coincides with the so-called polynomial block codes, a terminology from [2]. This
class contains all cyclic codes and shortened cyclic codes, i.e., CRC codes, see
also [12]. The relevance of polynomial block codes over Zpr was established
by the landmark paper [6] which shows that important families of nonlinear
binary codes are images under a Gray map of linear codes over the ring Z4, see
also [1,14].

In the field case, any delay-free finite support convolutional code (that is,
a convolutional code which has an encoder G(z) with G(0) full row rank) ad-
mits a minimal encoder that gives rise to a minimal trellis representation. Here
minimality is defined as “row-reducedness” and a minimal trellis is simply con-
structed as the controller canonical realization of a row reduced encoder. The
number of states in a minimal trellis can then be expressed in terms of the degree
of the code which is the sum of the row degrees of a minimal encoder. In this
paper we are interested in determining a similar procedure for the ring case.

Although methods to construct a minimal trellis from code sequences carry
through from the field case, as in [4], the literature does not provide a practical
trellis realization method that starts from a minimal polynomial encoder and
parallels the field case. In particular, it is an open problem, as observed in the
2007 paper [17], to express the minimum number of trellis states in terms of the
row degrees of a particular polynomial encoder of the code. The reason for this
seems to be that an appropriate minimality concept involving “row reducedness”
was, until recently, not available for polynomial matrices over Zpr . The recent
paper [8] develops the concept of “row reducedness” for polynomial matrices over
Zpr . Using this concept we define a particular type of polynomial encoder, called
p-encoder. We also define the concept of a delay-free p-encoder. We show that any
delay-free finite support convolutional code over Zpr (“delay-free” meaning that
it admits a delay-free p-encoder) admits a minimal p-encoder whose controller
canonical realization is a minimal trellis representation for the code. We find
that this minimal trellis exhibits nonlinear features. We give a simple expression
for the minimum number of trellis states in terms of the sum of the row degrees
of a minimal p-encoder. To prove that our practical construction is minimal, we
use the minimal trellis of [4] that is constructed from code sequences.

The algorithm of [20,21] also gives a practical trellis construction method but
differs from ours in that it considers associated block codes of the type C|[0,
) and
then uses the block trellis algorithm of [18] to build a minimal trellis for C. In
contrast, our method makes use of the polynomial structure of the convolutional
code and gives rise to a simple expression for the minimum number of trellis
states in terms of a degree invariant of the code.

In most of the literature on convolutional ring codes, code sequences are Lau-
rent series, so do not necessarily have finite support. In this classical setting it is
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natural to assume n > k and to interpret code sequences as trajectories on the
time-axis Z, rather than Z+. Also, catastrophicity issues arise that play no role in
the finite support case. The reader is referred to our paper [9] for an account on
minimal polynomial encoders and minimal trellis construction of convolutional
codes over Zpr in this classical setting.

2 Preliminaries

A set that plays a fundamental role throughout the paper is the set of “digits”,
denoted by Ap = {0, 1, . . . , p−1} ⊂ Zpr . Recall that any element a ∈ Zpr can be
written uniquely as a = θ0+θ1p+· · ·+θr−1p

r−1, where θ
 ∈ Ap for � = 0, . . . , r−1
(p-adic expansion). This fundamental property of the ring Zpr expresses a type
of linear independence among the elements 1, p, ..., pr−1. It leads to the notions
of “p-linear independence” and “p-generator sequence” for modules in Zn

pr , as
developed in the 1996 paper [18]. For example, for the simplest case n = 1, the
elements 1, p, p2, ..., pr−1 are called “p-linearly independent” in [18] and the
module Zpr = span {1} is written as Zpr = p−span {1, p, p2, . . . , pr−1}. The
module Zpr is said to have “p-dimension” r.

In this section we recall the main concepts from [8] on modules in Zn
pr [z], that

are needed in the sequel. We present the notions of p-basis and p-dimension of a
submodule of Zn

pr [z], which are extensions from [18]’s notions for submodules of
Zn

pr . From [8] we also recall the concept of a reduced p-basis in Zn
pr [z] that plays

a crucial role in this paper.

Definition 1. [8] Let {v1(z), . . . , vm(z)} ⊂ Zn
pr [z]. A p-linear combination

of v1(z), . . . , vm(z) is a vector
m∑

j=1

aj(z)vj(z), where aj(z) ∈ Zpr [z] is a poly-

nomial with coefficients in Ap for j = 1, . . . , m. Furthermore, the set of all p-
linear combinations of v1(z), . . . , vm(z) is denoted by p-span(v1(z), . . . , vm(z)),
whereas the set of all linear combinations of v1(z), . . . , vm(z) with coefficients in
Zpr [z] is denoted by span (v1(z), . . . , vm(z)).

Definition 2. [8] An ordered sequence (v1(z), . . . , vm(z)) of vectors in Zn
pr [z]

is said to be a p-generator sequence if p vm(z) = 0 and p vi(z) is a p-linear
combination of vi+1(z), . . . , vm(z) for i = 1, . . . , m− 1.

Lemma 1. Let (v1(z), . . . , vm(z)) be a p-generator sequence in Zn
pr [z]. Then

(v1(0), . . . , vm(0)) is a p-generator sequence in Zn
pr .

Theorem 1. [8] Let v1(z), . . . , vm(z) ∈ Zn
pr [z]. If (v1(z), . . . , vm(z)) is a p-

generator sequence then p−span (v1(z), . . . , vm(z)) = span (v1(z), . . . , vm(z)).
In particular, p−span (v1(z), . . . , vm(z)) is a submodule of Zn

pr [z].

All submodules of Zn
pr [z] can be written as the p-span of a p-generator sequence.

In fact, if M = span (g1(z), . . . , gk(z)) then M is the p-span of the p-generator
sequence (g1(z), pg1(z), . . . , pr−1g1(z), . . . , gk(z), pgk(z), . . . , pr−1gk(z)).
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Definition 3. [8] The vectors v1(z), . . . , vm(z) ∈ Zn
pr [z] are said to be p-

linearly independent if the only p-linear combination of v1(z), . . . , vm(z) that
equals zero is the trivial one.

Definition 4. Let M be a submodule of Zn
pr [z], written as a p-span of a p-

generator sequence (v1(z), · · · , vm(z)). Then (v1(z), · · · , vm(z)) is called a p-
basis for M if the vectors v1(z), . . . , vm(z) are p-linearly independent in Zn

pr [z].

Lemma 2. [8] Let M be a submodule of Zn
pr [z] and let (v1(z), v2(z), · · · , vm(z))

be a p-basis for M . Then each vector of M is written in a unique way as a
p-linear combination of v1(z), . . . , vm(z).

Lemma 3. Let M be a submodule of Zn
pr [z] and let (v1(z), v2(z), · · · , vm(z)) be

a p-basis for M , such that v1(0), · · · , vm(0) are p-linearly independent in Zn
pr .

Let (w1(z), w2(z), · · · , wm(z)) be another p-basis for M . Then w1(0), · · · , wm(0)
are also p-linearly independent in Zn

pr .

Proof. It follows from Lemma 1 that (v1(0), · · · , vm(0)) and (w1(0), · · · , wm(0))
are p-generator sequences in Zn

pr . Define modules V and W in Zn
pr by V :=

p−span (v1(0), · · · , vm(0)) and W := p−span (w1(0), · · · , wm(0)). Since the p-
generator sequence (v1(z), v2(z), · · · , vm(z)) is a p-basis for M , the vector wi(z)
(with i ∈{1, . . . , m}) can be written as a p-linear combination of v1(z), . . . , vm(z).
Substituting z = 0, it now follows that wi(0) is a p-linear combination of
v1(0), · · · , vm(0) and therefore W is a submodule of V . Vice versa, by the same
reasoning, V is a submodule of W . Consequently W = V has p-dimension m
because of the p-linear independence of v1(0), · · · , vm(0). It now follows from
Lemma 2.10 of [8] that w1(0), · · · , wm(0) are p-linearly independent and this
proves the lemma.

Next, we recall a particular p-basis for a submodule of Zn
pr [z], called “reduced

p-basis”. We first recall the concept of “degree” of a vector in Zn
pr [z], which is

the same as in the field case.

Definition 5. Let v(z) be a nonzero vector in Zn
pr [z], written as v(z) = v0 +

v1z + · · · + vdz
d, with vi ∈ Zn

pr , i = 0, . . . , d, and vd �= 0. Then v(z) is said to
have degree d, denoted by deg v(z) = d. Furthermore, vd is called the leading
coefficient vector of v(z), denoted by vlc.

Lemma 4. [8] Let M be a submodule of Zn
pr [z], written as a p-span of a p-

generator sequence (v1(z), . . . , vm(z)) with vlc
1 , . . . , vlc

m p-linearly independent in
Zn

pr . Then (v1(z), . . . , vm(z)) is a p-basis for M .

Definition 6. [8] Let M be a submodule of Zn
pr [z], written as a p-span of

a p-generator sequence (v1(z), . . . , vm(z)). Then (v1(z), . . . , vm(z)) is called a
reduced p-basis for M if the vectors vlc

1 , . . . , vlc
m are p-linearly independent

in Zn
pr .



Minimal Trellis Construction for Finite Support Convolutional Ring Codes 99

A reduced p-basis in Zn
pr [z] generalizes the concept of row reduced basis from the

field case. Moreover, it also leads to the predictable degree property and gives
rise to several invariants of M , see [8]. In particular, the number of vectors in
a reduced p-basis as well as the degrees of these vectors (called p-degrees), are
invariants of M . Consequently, their sum is also an invariant of M .

Every submodule M of Zn
pr [z] has a reduced p-basis. A constructive proof is

given by Algorithm 3.11 in [8] that takes as its input a set of spanning vectors
and produces a reduced p-basis of M . Moreover, it is easy to see that if the input
is already a p-basis of M , consisting of m vectors, then the algorithm produces
a reduced p-basis consisting of m vectors. Since m is an invariant of the module,
it follows that all p-bases of M have the same number of elements. As a result,
the next definition is well-defined and not in conflict with the slightly different
definition of [8].

Definition 7. The number of elements of a p-basis of a submodule M of Zn
pr [z]

is called the p-dimension of M , denoted as p−dim (M).

The following lemma will be used in the next section.

Lemma 5. Let M = span (g1(z), . . . , gk(z)) be a submodule of Zn
pr [z], where

g1(z), . . . , gk(z) ∈ Zn
pr [z] are linearly independent. Then p−dim M = rk.

Proof. The result follows immediately from the obvious fact that

(g1(z), pg1(z), . . . , pr−1g1(z), . . . , gk(z), pgk(z), . . . , pr−1gk(z))

is a p-basis for M .

3 p-Encoders and Trellises

It follows from the preceding section that any finite support convolutional code
C of length n admits a p-basis. In the sequel we denote the p-dimension (see
Definition 7) of C by κ. Recall that Ap = {0, 1, . . . , p− 1} ⊂ Zpr .

Definition 8. Let C be a finite support convolutional code over Zpr of length n
and p-dimension κ. Then E(z) ∈ Zκ×n

pr [z] is said to be a p-encoder of C if the
rows of E(z) are a p-basis for C.

Definition 9. Let E(z) be a p-encoder of a finite support convolutional code
over Zpr of length n, such that the rows of E(0) are a p-basis in Zn

pr . Then E(z)
is said to be a delay-free p-encoder.

The next lemma follows immediately from Lemma 3.

Lemma 6. Let C be a finite support convolutional code over Zpr of length n that
admits a delay-free p-encoder. Then all p-encoders of C are delay-free.

Definition 10. A finite support convolutional code over Zpr of length n is said
to be a delay-free code if all its p-encoders are delay-free.
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Not all finite support convolutional codes are delay-free. A simple example over
Z2 with n = 1 is the code C = span {z + z2}. In fact, convolutional codes that
are not delay-free seem to be of limited interest, as they employ an artificially
high lag. From now on we focus on delay-free codes.

Definition 11. Let C be a delay-free finite support convolutional code over Zpr

of length n. Then E(z) is said to be a minimal p-encoder of C if the rows of
E(z) are a reduced p-basis for C.

A minimal p-encoder for a delay-free finite support convolutional code C is ob-
tained by applying Algorithm 3.11 in [8] to any p-encoder of C.

In the sequel, we denote the leading row coefficient matrix of a polynomial
matrix V (z) by V lrc. If a delay-free finite support convolutional code C admits
an encoder G(z) such that Glrc has full row rank, then a minimal p-encoder is
trivially constructed as

E(z) = col (G(z), pG(z), . . . , pr−1G(z)). (1)

An important observation is that all delay-free finite support convolutional codes
admit a minimal p-encoder but they do not all admit an encoder G(z) such that
Glrc has full row rank.

Note that, because of Lemma 5, the p-dimension κ of a finite support convo-
lutional code of dimension k equals κ = rk. Also, if such a code is delay-free, it
can be easily verified that all its encoders G(z) have the property that G(0) has
full row rank.

A convolutional code can be represented by a trellis. Formally, we define a trel-
lis section as a four-tuple X = (Zn

pr , S, S′, K), where S and S′ are the left state set
and right state set, respectively, and K is the set of branches which is a subset of
S×Zn

pr×S′, such that every state is part of at least one branch, see also [4,11,10].
A trellis is a sequence X = {Xt}t∈Z+ of trellis sections Xt = (Zn

pr , St, S
′
t, Kt),

such that for all t ∈ Z+, S′
t = St+1 and S0 = {0}. A path through the trel-

lis is a sequence (b0, · · · , bt−1, bt, bt+1, · · ·) of branches bt = (st, ct, st+1) ∈ Kt

such that bt+1 starts in the trellis state where bt ends, for t ∈ Z+. The set of
all trellis paths that end at the zero state is denoted by π(X ). The mapping
λ : π(X ) �→ (Zn

pr )Z+ assigns to every path (b0, · · · , bt−1, bt, bt+1, · · ·) its label se-
quence (c0, · · · , ct−1, ct, ct+1, · · ·). We say that a sequence {ct}t∈Z+ passes through
state s at time t if there exists a corresponding path of branches {bt}t∈Z+ , where
bt = (st, ct, st+1), such that st = s. A trellis X is called a trellis representation
for a finite support convolutional code C if C = λ(π(X )) 1.

A trellis representation of a finite support convolutional code can be con-
structed from a p-encoder of the code. Let us first recall the wellknown controller
canonical form. A κ× n matrix E(z) is realized in controller canonical form [7]
(see also [3, Sect. 5]) as

E(z) = B(z−1I −A)
−1

C + D. (2)
1 We identify a polynomial c = c0 + c1z + · · ·+ cmzm in Zpr [z] with the finite support

sequence (c0, c1, . . . , cm) ∈ Zm+1
pr .
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Denoting the i’th row of E(z) by ei(z) =
∑δi


=0 ei,
z

, where ei,
 ∈ Z1×n

pr , the
matrices A, B, C and D in (2) are given by

A =

⎡
⎢⎣

A1

. . .
Aκ

⎤
⎥⎦ , B =

⎡
⎢⎣

B1

. . .
Bκ

⎤
⎥⎦ , C =

⎡
⎢⎣

C1

...
Cκ

⎤
⎥⎦ , D =

⎡
⎢⎣

e1,0

...
eκ,0

⎤
⎥⎦ ,

with

Ai =

⎡
⎢⎢⎢⎢⎣

0 1
. . .

. . .

. . . 1
0

⎤
⎥⎥⎥⎥⎦ , Bi =

[
1 0 · · · 0

]
, Ci =

⎡
⎢⎣

ei,1

...
ei,δi

⎤
⎥⎦ for i = 1, . . . , κ. (3)

Whenever δi = 0, the ith block in A as well as C is absent and a zero row occurs
in B. Denoting the sum of the δi’s by δ, it is clear that A is a δ × δ nilpotent
matrix. The above controller canonical realization can be visualized as a shift-
register with δ registers or, equivalently, as a trellis representation with pδ trellis
states, as expressed in the next definition.

Definition 12. Let C be a finite support convolutional code over Zpr of length
n and p-dimension κ, and let E(z) ∈ Zκ×n

pr [z] be a p-encoder of C. Let δ =∑κ
i=1 rowdeg ei(z), where ei(z) denotes the i-th row of E(z), and let

(A, B, C, D) ∈ Zδ×δ
pr × Zκ×δ

pr × Zδ×n
pr × Zκ×n

pr

be a controller canonical realization of E(z) as defined above. Then the con-
troller canonical trellis corresponding to E(z) is defined as XE(z) = {Xt}t∈Z+,
where Xt = (Zn

pr , St, S
′
t, Kt) with

S0 = {0} and S′
t = {sA + uB : s ∈ St and u ∈ Aκ

p}, t ∈ Z+ and

Kt = {(s(t), s(t)C + u(t)D, s(t)A + u(t)B | s(t) ∈ St and u(t) ∈ Aκ
p}.

Note that both inputs and states take their values in a set that is not closed with
respect to addition or scalar multiplication (namely Aκ

p and Aδ
p, respectively).

4 Minimal Trellis Construction from a p-Encoder

A trellis representation X for a finite support convolutional code C is called
minimal if for all t ∈ Z+ the size of its trellis state set St is minimal among all
trellis representations of C. It is wellknown how to construct a minimal trellis
representation in terms of the code sequences of C. In fact, the theory of canon-
ical trellis representations from the field case carries through to the ring case,
see [19,4,13,10,11,20]. We recall the construction of such a representation (called
two-sided realization in [19]), adapting it for our case of finite support codes.
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Consider two code sequences c ∈ C and c̃ ∈ C. Conform [19], the concatenation
at time t ∈ Z+ of c and c̃, denoted by c ∧t c̃, is defined as

c ∧t c̃(t′) :=
{

c(t′) for 0 ≤ t′ < t
c̃(t′) for t′ ≥ t

.

We define a relation in C, for each t ∈ Z+, as follows

c �t c̃ ⇔ c ∧t c̃ ∈ C, (4)

for c, c̃ ∈ C. The linearity of C immediately implies that �t is an equivalence
relation on C.

Definition 13. Let C be a finite support convolutional code over Zpr of length
n. The canonical trellis of C is defined as Xc = {Xt}t∈Z+, where Xt =
(Zn

pr , St, S
′
t, Kt) with

St := C mod �t, S′
t := C mod �t+1 and Kt := {([c]t, c(t), [c]t+1)}.

It can be shown as in [19,10] that the above trellis is minimal. Intuitively this is
explained from the fact that, by construction, states cannot be merged.

In the field case, a minimal trellis representation for a delay-free finite support
convolutional code is obtained as the controller canonical trellis realization of a
row reduced encoder. The next theorem presents our main result for delay-free
finite support convolutional codes over Zpr . It obtains a minimal trellis represen-
tation as the controller canonical trellis realization of a minimal p-encoder E(z).

Theorem 2. Let C be a delay-free finite support convolutional code over Zpr of
length n and p-dimension κ. Let E(z) be a minimal p-encoder for C. Denote
the p-degrees of C by γi for i = 1, . . . , κ, and denote γmax := max {γi : i =
1, . . . , κ} and γ :=

∑κ
i=1 γi. Then the controller canonical trellis XE(z), defined

in Definition 12, is a minimal trellis representation for C. In particular, the
number of trellis states of XE(z) at each instant t equals pγ, for t ≥ γmax.

Proof. Consider the mapping Θt : St �→ C mod �t, given by Θt(s) := [c]�t
,

where c ∈ C passes through state s at time t. For every t ∈ Z+, the mapping
Θt is well-defined since for any s there exists such a code sequence and any two
code sequences that pass through state s at time t are obviously equivalent.

Since the canonical trellis Xc of Definition 13 is minimal, it suffices to prove
that Θt is a bijection for every t ∈ Z+. Surjectivity follows immediately from the
fact that all code sequences pass through some state at time t. To prove that Θt

is injective, let s and s̃ ∈ St be such that Θt(s) = Θt(s̃). Let c and c̃ be code
sequences that pass through s and s̃ at time t, respectively. Then c = uE(z)
and c̃ = ũE(z), for some u, ũ ∈ Aκ

p [z]. From Θt(s) = Θt(s̃) it follows that the
sequence c ∧t c̃ ∈ C. Denote its state at time t by s′ and let u′ ∈ Aκ

p [z] be such
that c ∧t c̃ = u′E(z). We now prove that s = s′, as follows. Firstly, it is clear
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that

[
c(0) c(1) · · · c(t− 1)

]
=
[
u(0) u(1) · · · u(t− 1)

]
⎡
⎢⎢⎢⎣

D BC BAC · · ·
0 D BC · · ·
0 0 D · · ·

. . .

⎤
⎥⎥⎥⎦ (5)

=
[
u′(0) u′(1) · · · u′(t− 1)

]
⎡
⎢⎢⎢⎣

D BC BAC · · ·
0 D BC · · ·
0 0 D · · ·

. . .

⎤
⎥⎥⎥⎦ . (6)

From the fact that the rows of D = E(0) are p-linearly independent it then
follows that u(�) = u′(�) for 0 ≤ � ≤ t− 1. As a result s = s′.

We now prove that s = s̃. By the above, c∧t c̃ is a code sequence that passes
through s at time t. Denote by M ′ the degree of u′ and by M ′′ the degree of ũ.
Let M = max {M ′, M ′′}. By construction the states of c̃ and c∧t c̃ are both zero
at time M+γmax+1. Denote by s(j) the state at time j of the code sequence c∧tc̃
and by s̃(j) the state at time j of the code sequence c̃. Now recall the formula (3)
for the controller canonical form. Since s(j) = 0 for j ≥ M + γmax + 1, we have
that 0 = s(M + γmax)A = s̃(M + γmax)A, and thus the nonzero components
of s(M + γmax) and s̃(M + γmax) must be last components in a 1 × γi-block.
Also, c̃(M + γmax) = s(M + γmax)C = s̃(M + γmax)C, which means that the
last components of the 1 × γi-blocks of s(M + γmax) and s̃(M + γmax) are
equal. This follows from the fact that states only take values in Ap and that, by
construction, the last rows of the γi × n-blocks of C are rows from Elrc and are
therefore p-linearly independent. Thus s(M + γmax) = s̃(M + γmax). Repeating
this argument again and again, we conclude that s(j) = s̃(j), for j ≥ M . As a
result, u(j) = u′(j) for j = M − γmax − 1, . . . , M − 1.

If t ≥ M the theorem is proved. Suppose now that t < M . From the fact that
s(M) = s̃(M) and that u(M − 1) = u′(M − 1), it follows that s(M − 1)A =
s̃(M − 1)A which means that the first γi − 1 components of the 1 × γi-blocks
of s(M − 1) and s̃(M − 1) are equal. On the other hand, since s(M − 1)C =
s̃(M−1)C = c̃(M−1)−u(M−1)D we conclude, by the same reasoning as before,
that also the last components in the 1× γi-blocks of s(M − 1) and s̃(M − 1) are
equal, which means that s(M − 1) = s̃(M − 1). Repeating this argument again
and again, we conclude that s = s̃, which proves the theorem. Obviously, the
number of trellis states at each instant t equals pγ , for t ≥ γmax.

Example 1. Over Z4: consider the finite support convolutional code C of length
n = 3, with encoder

G(z) =
[
g1(z)
g2(z)

]
=
[

z2 + 1 1 0
2z 1 2

]
.

The controller canonical trellis associated with G(z) has 43 = 64 trellis states.
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Note that G(0) has full row rank but that Glrc does not have full row rank,
that is, G(z) is not row reduced. In fact, this code does not admit a row reduced
encoder. As a result, it is not possible to construct a minimal trellis as a controller
canonical realization of an encoder of C. We now compute a minimal p-encoder
for C from which we construct a minimal trellis.

Firstly, a nonminimal p-encoder of C is given by

E(z) =

⎡
⎢⎢⎣

g1(z)
2g1(z)
g2(z)
2g2(z)

⎤
⎥⎥⎦ =

⎡
⎢⎢⎣

z2 + 1 1 0
2z2 + 2 2 0

2z 1 2
0 2 0

⎤
⎥⎥⎦ , with Elrc =

⎡
⎢⎢⎣

1 0 0
2 0 0
2 0 0
0 2 0

⎤
⎥⎥⎦ .

Note that the rows of E(0) constitute a p-basis in Zn
pr . The row reduction algo-

rithm of [8, Algorithm 3.11] is particularly simple in this case: by adding z times
the third row to the second row, we obtain the following minimal p-encoder Ē(z)
given by:

Ē(z) =

⎡
⎢⎢⎣

z2 + 1 1 0
2 z + 2 2z
2z 1 2
0 2 0

⎤
⎥⎥⎦ with Ēlrc =

⎡
⎢⎢⎣

1 0 0
0 1 2
2 0 0
0 2 0

⎤
⎥⎥⎦ .

Indeed, the rows of Ēlrc are p-linearly independent. The p-degrees of C are 2, 1,
1, 0, so that their sum γ equals 4. The controller canonical trellis corresponding
to Ē(z) is given by

A =

⎡
⎢⎢⎣

0 1 0 0
0 0 0 0
0 0 0 0
0 0 0 0

⎤
⎥⎥⎦ ; B =

⎡
⎢⎢⎣

1 0 0 0
0 0 1 0
0 0 0 1
0 0 0 0

⎤
⎥⎥⎦ ; C =

⎡
⎢⎢⎣

0 0 0
1 0 0
0 1 2
2 0 0

⎤
⎥⎥⎦ ; D =

⎡
⎢⎢⎣

1 1 0
2 2 0
0 1 2
0 2 0

⎤
⎥⎥⎦ .

By Theorem 2, this trellis is minimal with 24 = 16 trellis states for t ≥ γmax = 2.

5 Conclusions

In this paper we focus on polynomial encoders for delay-free finite support con-
volutional codes over Zpr . We introduce the notion of p-encoder and show that
any delay-free finite support convolutional code C over Zpr admits a minimal
p-encoder. We present a simple and efficient method to construct a minimal
trellis representation for C from such a minimal p-encoder. The method extends
the well-known procedure for constructing minimal trellises for delay-free finite
support convolutional codes over a field from a controller canonical realization
of a row reduced encoder. In addition, similar to the field case, we obtain an
expression for the minimal number of trellis states in terms of the sum of row
degrees of a minimal p-encoder. A major difference with the field case is that
our minimal trellis employs a nonlinear state space as well as a nonlinear input
space.
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Finite support convolutional codes of length n = 1 are also known as poly-
nomial block codes, which includes all cyclic and CRC codes. It follows from
our account that minimal block trellises (not allowing code component permu-
tations) of polynomial block codes over Zpr are obtained as minimal trellises of
finite support convolutional codes of length n = 1. It is a topic of future research
to investigate the connections of the results of this paper with the literature on
cyclic block codes over Zpr , see for example [1,14].
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Abstract. Results on the quasi-cyclicity of the Gray map image of a
class of codes defined over the Galois ring GR(p2, m) are given. These
results generalize some appearing in [8] for codes over the ring ZZ/p2ZZ
of integers modulo p2 (p a prime). The ring of (truncated) Witt vectors
is a useful tool in proving the main results.

Keywords: Quasi-cyclicity, Galois rings, Gray map, Witt ring.

1 Introduction

After the seminal works [13] and [5] where codes including the non-linear binary
Kerdock and Preparata are described as the Gray map image of linear codes
over the ring of integers modulo 4, ZZ/4ZZ, the study of codes defined over the
ring ZZ/pmZZ of integers modulo pm (p a prime and m a positive integer), and
more generally, codes defined over finite chain rings including Galois rings has
increased ([15], [7], [3], [14]). The Gray map has been extended to finite chain
rings ([4]) and, specifically, the image under the Gray map of codes defined over
the ring ZZ/pmZZ has been studied by several authors ([2], [22], [8], [19]). The
ring ZZ/pmZZ is a particular case of a Galois ring (see section 2) and a natural
question to ask is to what extent are the known results for codes defined on
the former ring and its Gray image valid for codes defined on the latter ring
and its Gray image. The Galois ring GR(p2, m) has been the subject of study
by several authors in areas such as sequences with good correlation properties
([10]), exponential sums ([9]) and repeated root-cyclic codes ([18]). The results
presented in this note are also related to codes defined over this ring.

The ring of (truncated) Witt vectors is a useful tool for proving the main
results of this note. This ring has been used in several areas including Number
Theory, Algebraic Geometry, Coding Theory and Cryptography. In section 2
the definition and basic properties of Galois rings as well as the ring of (trun-
cated) Witt vectors are considered. In particular, it is seen that the Galois ring
GR(p2, m) and the Witt ring W2(IF), where IF is the residue field of the Galois
ring, are isomorphic. The Gray map on the Witt ring W2(IF) is recalled and
some of its properties are given in section 3. The main results of this note ap-
pear in section 4 where a necessary and sufficient condition for a code over the

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 107–116, 2008.
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ring W2(IF) to be α̂-cyclic is given in terms of its Gray image (Theorem 2), and
a necessary and sufficient condition for the code to be γ̂-cyclic is also given in
terms of its Gray image (Theorem 3). These results generalize some of those
appearing in [8] for codes defined over the ring GR(p2, 1) = ZZ/p2ZZ.

2 The Galois and Witt Rings

The definition and basic properties of the Galois ring and the ring of (truncated)
Witt vectors are recalled in this section. For further details on Galois rings we
refer the reader to [11], Chapter XVI (see also [5]) and for the Witt ring see [17].

2.1 Galois Ring

Let ZZ/pnZZ be the ring of integers modulo pn, where p is a prime and n a positive
integer. An irreducible polynomial f(x) ∈ (ZZ/pnZZ)[x] is said to be basic if its
reduction modulo p is irreducible. The Galois ring GR(pn, m) is defined as:

GR(pn, m) = (ZZ/pnZZ)[x]/〈f(x)〉

where f(x) ∈ (ZZ/pnZZ)[x] is a monic, basic, primitive irreducible polynomial of
degree m dividing xpm−1 − 1 and 〈f(x)〉 is the ideal of (ZZ/pnZZ)[x] generated
by f(x).

The ring R = GR(pn, m) is local with maximal ideal M = 〈p〉 generated by
p and its residue field IF = R/M is isomorphic to IFpm , the Galois field with pm

elements. The cardinality of R is |R| = pnm and the elements of the maximal
ideal M are the zero-divisors of R. Any ideal of the Galois ring is of the form
〈pi〉 for 1 ≤ i ≤ n and there is a chain of ideals:

R = 〈1〉 ⊃ 〈p〉 ⊃ · · · ⊃ 〈pn〉 = {0}.

Let μ : R −→ IF, μ(θ) = θ be the canonical map from the Galois ring onto its
residue field. Let T ⊂ R be a Teichmüller set of representatives of the Galois ring.
Then any element β ∈ R has a unique p-adic (multiplicative) representation:

β = r0(β) + r1(β)p + · · ·+ rn−1(β)pn−1

where ri(β) ∈ T .
If R∗ denotes the group of units of R then R = M∪R∗ and R∗ = C × G

where C is a cyclic group of order pm − 1 and G is a group of order p(n−1)m (see
[11], Theorem XVI.9; [21], Theorem 14.11, pag.319). If ω ∈ R is a root of f(x)
then the subgroup C is generated by ω, its image ω̄ = μ(ω) ∈ IFpm is a root
of the irreducible polynomial f(x) = μ(f(x)) and IF∗

pm = IFpm \ {0} = 〈ω̄〉. If
q = pm, the Teichmüller set of representatives of the Galois ring R can be taken
as T = {0, 1, ω, ω2, ..., ωq−2}.

It is easy to see that the Galois ring R has the structure of a (ZZ/pnZZ)-
module:

R = (ZZ/pnZZ) [ω] = (ZZ/pnZZ) + (ZZ/pnZZ)ω + · · ·+ (ZZ/pnZZ)ωm−1.

Examples of Galois rings include:
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1. GR(p, m) = GF(p, m) = IFpm , GR(pn, 1) = ZZ/pnZZ.
2. Let f(x) = x3+x+1 ∈ (ZZ/4ZZ)[x] which is a monic, basic, irreducible poly-

nomial over ZZ/4ZZ. Then GR(22, 3) = (ZZ/4ZZ)[x]/〈f(x)〉, ([11], pag.297).
3. Let g(x) = x3 + 2x2 + x − 1 ∈ (ZZ/4ZZ)[x] which is also a monic, basic,

irreducible polynomial over ZZ/4ZZ. Then GR(22, 3) = (ZZ/4ZZ)[x]/〈g(x)〉,
([5], Section III).

4. Let h(x) = x2 + 4x + 8 ∈ (ZZ/9ZZ)[x] which is a monic, basic, irreducible
polynomial over ZZ/9ZZ. Then GR(32, 2) = (ZZ/9ZZ)[x]/〈h(x)〉, ([21]).

2.2 The Witt Ring W2(IF)

Now we will consider the Galois ring R = GR(p2, m), where m ≥ 1 is an integer.
In this subsection the definition of the ring of (truncated) Witt vectors, W2(IF),
over the finite field IF = IFpm is recalled and an isomorphism between the Galois
ringR andW2(IF) is given. This ring is used in later sections to give results on the
Gray image of codes defined over the Galois ring R or equivalently on the Witt
ring W2(IF). For further details on the Witt ring we refer the reader to [17].

Let (IF, +, ∗) = (IFpm , +, ∗) be the finite field with pm elements. The under-
lying set of the Witt ring W2(IF) is just the cartesian product IF × IF and the
operations “+w”, “∗w” are defined as follows:

(x0, x1) +w (y0, y1) = (S0(x0, x1, y0, y1), S1(x0, x1, y0, x1))

where
S0(x0, x1, y0, y1) = x0 + y0

S1(x0, x1, y0, y1) =
(
(x1 + y1)− 1

p ((x0 + y0)p − xp
0 − yp

0)
)

and
(x0, x1) ∗w (y0, y1) = (x0y0, x

p
0y1 + yp

0x1)

(for elements a, b ∈ IF we write a ∗ b = ab).
If IF = R/M is the residue field of the Galois ring R it is easy to see that the

mapping

ψ : R −→W2 (IF) , â = ψ(a) = (a0, a
p
1) (1)

where a = a0 +a1p ∈ R, a0, a1 ∈ T , is a ring isomorphism. The inverse mapping
is:

ψ−1 : W2 (IF) −→ R, ψ−1
(
b0, b1

)
= B0 + pB

1/p
1 (2)

where B0, B1 ∈ T are such that Bi = bi (the bar means the image under the
canonical mapping μ). If â, b̂ are any elements of the Witt ring W2 (IF) and no
confusion arises, the elements â +w b̂ and â ∗w b̂ will just be denoted by â + b̂
and âb̂ respectively.
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3 The Gray Map

In this section, taking into consideration that the Galois ring R = GR(p2, m)
and the Witt ring W2(IF) are isomorphic, the definition of the Gray map on this
last ring is recalled.

Let c0 ∈ IFq be the vector that lists all the elements of IF, let 1 = (1, 1, ..., 1) ∈
IFq be the all-1 vector of length q = pm and let M be the 2× q matrix whose first
row is c0 and the second row is 1. Then the Gray map on W2(IF) is defined as:

φ̂ : W2(IF) −→ IFq, φ̂(a0, a1) = (a0, a1)M. (3)

The relation of the Gray map just defined and the Gray map φ as introduced in
[4] is that

Im(φ) = Im(φ̂ ◦ ψ)

where ψ is the isomorphism between the Galois ring GR(p2, m) and the Witt
ring W2(IF) mentioned above.

In the sequel the Galois ring R = GR(p2, m) and the ring of (truncated) Witt
vectors W2(IF) as well as the maps φ and φ̂ will be used freely.

For a positive integer n, the Gray map is extended coordinate-wise to Rn or
equivalently to W2(IF)n as:

if A = (A0, ..., An−1) ∈ Rn then Φ(A) = (φ(A0), ..., φ(An−1)) ∈ IFnq.
In the case GR(p2, 1) = ZZ/p2ZZ the Gray map just defined and the one given

in [8] are the same up to a permutation.
We now recall the definition of the homogeneous weight on the Galois ring

R = GR(pn, m) (cf. [4], [6]):

wth(γ) =

⎧⎨
⎩

(q − 1)qn−2, if γ ∈ R \ 〈pn−1〉
qn−1, ifγ ∈ 〈pn−1〉 \ {0}
0, otherwise

where as above q = pm. Observe that in our case n = 2.
Also, the homogeneous weight is extended to Rn as:

wth(A) = wth(A0) + · · ·+ wth(An−1).

It is easy to see that the homogeneous weight on Rn as defined above induces
a metric, dh, on Rn. Let dH be the Hamming metric on IFnq. One of the main
properties of the Gray map is the following (cf. [4]):

Theorem 1. With the notation as introduced above, the Gray map is an injec-
tive isometry from (Rn, dh) into (IFnq, dH).

The Gray map has other properties including the following,

Proposition 1. With the notation as introduced above, let Â = (a0, a1) be any
element of the Witt ring W2(IF) and let c0, b1 be any elements of IF. Then:

φ̂(0, c0) = (c0, ..., c0)
φ̂(Â +w (0, b1)) = φ̂(Â) + φ̂(0, b1).
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Proof. The first claim follows at once from the definition of the Gray map φ̂.
For the second part just observe that Â+w (0, b1)) = (a0, a1 + b1) and the claim
also follows from the definition of the Gray map.

In the case GR(p2, 1) = ZZ/p2ZZ, Proposition 1 gives Proposition 2.1 of [8] for
k = 1.

4 Gray Images of Codes

For the main results of this section a particular way of expressing and enumera-
ting the elements of the residue field IF = IFpm of the Galois ring R = GR(p2, m)
(or the Witt ring W2(IF)) is given.

For i ∈ IN such that 0 ≤ i ≤ pm−1 let i = di0 +di1p+ · · ·+di(m−2)p
m−2 where

dis ∈ {0, . . . , p − 1} for each s ∈ {0, . . . , m − 2}, be the representation for i in
base p and let (i)p = (di0, di1, . . . , di(m−2)).

Since the field IF is an extension of degree m of the base field IFp let Ω =
{1, ω̄, ..., ω̄m−1} be a basis of IF over IFp. For any j ∈ IN such that 0 ≤ j ≤ p− 1
let

(j + (i)p)Ω = j + di0ω̄ + di1ω̄
2 + · · ·+ di(m−2)ω̄

m−1

and let

Bj : (j + (0)p)Ω, (j + (1)p)Ω, . . . , (j + (i)p)Ω, . . . , (j + (pm−1 − 1)p)Ω, (j + (pm−1)p)Ω.

Then the elements of the field IFpm can be taken as

{B0, B1, ..., Bp−1}.

Let M be the 2 × pm matrix whose first row consists of the elements of the
residue field IF, taken in the order described above, and whose second row is the
all one vector 1 of length q = pm. Then the image of (a0, a1) ∈ W2(IF) under
the Gray map, φ̂(a0, a1) = (a0, a1)M , (see (3)), is the vector of length q:

(a0B0 + a11, ..., a0Bj + a11, ..., a0Bp−1 + a11)

where

a0Bj + a11 : (j + (0)pΩ)a0 + a1, . . . , (j + (i)pΩ)a0 + a1, . . . , (j + (pm−1 − 1)pΩ)a0 + a1

for 0 ≤ j ≤ p− 1.
Let α = 1 +Tp be a (principal) unit of the Galois ring R = GR(p2, m) where

T ∈ T is such that its image in the residue field IF under the canonical mapping
is equal to −1 and let α̂ = (1, p− 1) be the corresponding element in the Witt
ring W2(IF). Let σ be the usual cyclic shift, i.e., if X = (X1, X2, ..., Xq) then
σ(X) = (Xq, X1, ..., Xq−1), and for any positive integer k, 0 ≤ k ≤ q, σk shift k
places.

With the notation as above we have the following,
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Lemma 1. Let φ̂ be the Gray map on W2(IF) and let α̂ be as introduced above.
Then for any element Â = (a0, a1) ∈ W2(IF) such that a0 ∈ IFp we have

φ̂
(
α̂Â
)

= σpm−1
(
φ̂(Â)

)
.

Proof. From the product on the Witt ring and the definiton of the Gray map it
follows that

φ̂
(
α̂Â
)

= (..., a0Bj + ((p − 1)a0 + a1)1, ...) = (..., (j + (p − 1) + (i)pΩ)a0 + a1, ..., )

= (a0Bp−1 + a11, ..., a0Bj+(p−1) + a11, ..., a0Bp−2 + a11)

(for j ∈ {0, 1, ..., p − 1}, j + (p − 1) is taken modulo p and the product α̂Â is
taken in the Witt ring).

On the other hand,

σpm−1
(
φ̂(Â)

)
= σpm−1

(a0B0 + a11, ..., a0Bj + a11, ..., a0Bp−1 + a11)
= (a0Bp−1 + a11, ..., a0Bj−1 + a11, ..., a0Bp−2 + a11)

and the claim is proved.

Define the following mappings:

1. Let α̂ = (1, p− 1) ∈ W2(IF) be as introduced above. Then,

να̂ : W2(IF)n −→W2(IF)n, να̂(Â0, ..., Ân−1) = (α̂Ân−1, ..., Ân−2).

2. Let IF = IFq, (q = pm), be the residue field of the Galois ring R (or the Witt
ring W2(IF)) and σ be the usual cyclic shift. For any positive integer n let,

σ̃ : IFnq −→ IFnq, σ̃(X) = (σpm−1
(Xn−1),X0, ...,Xn−2)

i.e., the action of σ̃ on X = (X0, ...,Xn−1), where each Xi ∈ IFq, is to first
apply the usual cyclic shift to X obtaining (Xn−1,X0, ...,Xn−2) and then
apply the mapping σpm−1

to Xn−1 and the identity to the other entries Xi.

Definition 1. With the notation as introduced above, a code Ĉ ⊆ W2(IF)n is
called α̂-cyclic if να̂(Ĉ) = Ĉ.

Proposition 2. For any positive integer n let Â = (Â0, ..., Ân−1) ∈ W2(IF)n

and assume that Ân−1 = (a(n−1)
0 , a

(n−1)
1 ) is such that a

(n−1)
0 ∈ IFp. Then

Φ̂ ◦ να = σ̃ ◦ Φ̂.

Proof. From the definition of the product on the Witt ring and the hypothesis
on a

(n−1)
0 , it follows that α̂Ân−1 = (a(n−1)

0 , (p− 1)a(n−1)
0 + a

(n−1)
1 ). Then

σ̃(Φ̂(Â)) = (σpm−1
(φ̂(Ân−1), φ̂(Â0), ..., φ̂(Ân−2))).
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On the other hand,

Φ̂(να(Â)) = (φ̂(α̂Ân−1), φ̂(A0), ..., φ̂(An−2)).

Thus, in order to prove the claim of the proposition it is enough to show that

σpm−1
(φ̂(Ân−1)) = φ̂(α̂Ân−1)

but this relation follows from Lemma 1.

Definition 2. With the notation as introduced above, a code D̃ ⊆ IFnq is called
first-block quasi-cyclic of index pm−1 if σ̃(D̃) = D̃.

As an immediate consequence of Proposition 2 we have the following:

Theorem 2. Let Ĉ ⊆ W2(IF)n be a code such that for each Â = (Â0, ..., Ân−1) ∈
Ĉ, Ân−1 = (a(n−1)

0 , a
(n−1)
1 ) ∈ IFp × IF ⊆ W2(IF). Then Ĉ is α̂-cyclic if and only

if its Gray image Φ̂(Ĉ) is first-block quasi-cyclic of index pm−1.

Proof. If Ĉ ⊆ W2(IF)n is a code such that Φ̂(Ĉ) is a first-block quasi-cyclic of
index pm−1, then from Proposition 2,

Φ̂(Ĉ) = σ̃
(
Φ̂(Ĉ)

)
= Φ̂

(
να(Ĉ)

)
and the claim follows from the injectivity of the Gray map. The other direction
is also immediate from Proposition 2.

Observe that since ZZ/p2ZZ = GR(p2, 1), Theorem 2 gives Theorem 2.4 for the
case k = 1, i.e. Corollary 2.5 of [8], up to a permutation.

Let R = GR(p2, m) be the Galois ring as before, M its maximal ideal, IF =
IFq, (q = pm) the residue field and T the Teichmüller set of R. Let n ∈ IN be
such that (n, p) = 1 and n′ ∈ {1, ..., p− 1} such that nn′ ≡ 1 mod p. Let N ′ ∈ T
be such that its image under the canonical map is n′, γ = 1 + N ′p ∈ 1 +M and
γ̂ = (1, n′) ∈ W2(IF) be its image in the Witt ring. Observe that for any positive
integer k, γ̂k = (1, (kn′)p), where (∗)p means reduction modulo p. In particular
γ̂n = (1, 1).

Now define the following mappings:

1. With the notation as above,

χγ̂ : W2(IF)n −→ W2(IF)n, χγ̂(Â) = (Â0, ..., γ̂
iÂi, ..., γ̂

n−1Ân−1)

where Â = (Â0, ..., Ân−1).
2. Let σ be the usual cyclic shift and let τ = σpm−1

. Let

τ̃ : IFnq −→ IFnq , τ̃(X) = (τ (−0n′)p(X0), ..., τ
(−in′)p(Xi), ..., τ

(−(n−1)n′)p(Xn−1))

where X = (X0, ...,Xn−1).



114 C.A. López-Andrade and H. Tapia-Recillas

Definition 3. With the notation as above, a code Ĉ ⊆ W2(IF)n is said to be
γ̂-cyclic if χγ̂(Ĉ) = Ĉ.

Definition 4. If IF is the residue field of the Galois ring R, a code D ⊆ IFnq is
said to be τ̃ -quasi-cyclic if τ̃ (D) = D.

Proposition 3. With the notation as above, for any Â = (Â0, ..., Ân−1) ∈
W2(IF)n with Âi = (a(i)

0 , a
(i)
1 ), a

(i)
0 ∈ IFp for i = 0, 1, ..., n − 1, the following

relation holds:
Φ̂
(
χγ̂(Â)

)
= τ̃

(
Φ̂(Â)

)
where Φ̂ is the Gray map on W2(IF)n.

Proof. From the definition of the mapping χγ̂ and the Gray map on W2(IF)n it
follows that,

Φ̂
(
χγ̂(Â)

)
= (φ̂(Â0), ..., φ̂(γ̂iÂi), ..., φ̂(γ̂n−1Ân−1)).

On the other hand, from the definition of the mapping τ̃ ,

τ̃(Φ(Â)) = (τ (−0n′)p(φ̂(Â0)), ..., τ (−in′)p(φ̂(Âi)), ..., τ (−(n−1)n′)p(φ̂(Ân−1)).

From the product on the Witt ring and the hypothesis on Âi it follows that,

φ̂(γ̂iÂi) =
(
a
(i)
0 B(in′)p + a

(i)
1 1, ..., a

(i)
0 B(j+in′)p + a

(i)
1 1, ..., a

(i)
0 B(p−1+in′)p + a

(i)
1 1
)

and

τ (−in′)p(φ̂(Âi)) =
(
(τ−1)(in

′)p(a
(i)
0 B0 + a

(i)
1 1, ..., a

(i)
0 Bj + a

(i)
1 1, ..., a

(i)
0 Bp−1 + a

(i)
1 1)

)
.

Observe that if Λ = (Λ0, Λ1, ..., Λp−1) where Λj = a
(i)
0 Bj + a

(i)
1 1, it is easy to see

that τ = σpm−1
acts on Λ as the usual cyclic shift, i.e., τ(Λ) = (Λp−1, Λ0, ..., Λp−2)

and for any positive integer k, τ−k(Λ) = (Λk, Λk+1, ..., Λj+k, ..., Λp−2+k), (where
j + k is taken modulo p).

From this observation we conclude that φ̂(γ̂iÂi) = τ (−in′)p(φ̂(Âi)) for i =
0, 1, ..., n− 1, proving the claim.

Now we have the following,

Theorem 3. Let Ĉ ⊆ W2(IF)n be a code of length n relatively prime to p such
that for any Â = (Â0, ..., Ân−1) ∈ Ĉ, Âi = (a(i)

0 , a
(i)
1 ) ∈ IFp × IF, 0 ≤ i ≤ n− 1.

Then the code Ĉ is γ̂-cyclic if and only if Φ̂(Ĉ) is a τ̃ -quasi-cyclic code of length
nq over IF.

Proof. If Ĉ ⊆ W2(IF)n is a code such that Φ̂(Ĉ) is a τ̃ -quasi-cyclic code, from
Proposition 3,

Φ̂(Ĉ) = τ̃
(
Φ̂(Ĉ)

)
= Φ̂

(
χγ̂(Ĉ)

)
and the claim follows from the injectivity of the Gray map. The other direction
is also immediate from Proposition 3.
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Notes and Comments. Let n ∈ IN be such that (n, p) = 1, γ̂ = (1, n′) be as
defined above and let β̂ be its inverse. Let An = W2(IF)[x]/〈xn − 1〉, Bn =
W2(IF)[x]/〈xn − β̂〉 and P : W2(IF)n −→ An, P (â0, ..., ân−1) = â0 + â1x + · · ·+
ân−1x

n−1, P ′ : W2(IF)n −→ Bn, P ′(b̂0, ..., b̂n−1) = b̂0 + b̂1x + · · ·+ b̂n−1x
n−1 be

the polynomial representation mappings of W2(IF)n into the rings An and Bn,
respectively. The following claims are easy to see (cf. [8], Section III):

1. μγ̂ : An −→ Bn, μγ̂(a(x)) = a(γ̂x) is a ring isomorphism and in particular
I is and ideal of An if and only if μγ̂(I) is an ideal of Bn.

2. A code Ĉ ⊂ W2(IF)n is cyclic if and only if P (Ĉ) is an ideal of An.
3. A code Ĉ ⊂ W2(IF)n is β̂-cyclic if and only if P ′(Ĉ) is an ideal of Bn.
4. μγ̂ ◦ P = P ′ ◦ χγ̂ .

Based on the claims just mentioned, Theorem 3 can be related to the concept of
cyclicity and β̂-cyclicity of a W2(IF)-code of length n relatively prime to p but
due to space limitations we are not able to provide further details.
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Abstract. The quality of an algebraic geometry code depends on the
curve from which the code has been defined. In this paper we consider
codes obtained from Castle curves, namely those whose number of ra-
tional points attains the Lewittes’ bound for some rational point Q and
the Weierstrass semigroup at Q is symmetric.

1 Introduction

Goppa constructed error correcting linear codes by using tools from Algebraic
Geometry: a nonsingular, projective, geometrically irreducible, algebraic curve
X of genus g defined over Fq, the finite field with q elements, and two rational
divisors D and G on X ; see [12,13,30]. These divisors are chosen in such a way
that they have disjoint supports and D equals to a sum of pairwise distinct
rational points, D = P1 + . . . +Pn. The algebraic geometry (or simply AG) code
defined by the triple (X , D, G) is the q-ary linear space

C(X , D, G) := {ev(f) := (f(P1), . . . , f(Pn)) : f ∈ L(G)} ,

where L(G) = {f ∈ Fq(X )∗ : G + div(f) # 0} ∪ {0} is the Riemann-Roch space
associated to G. Soon after its introduction, AG codes become an important
instrument in Coding Theory; for example, Tsfasman, Vlǎduţ and Zink showed
that the Gilbert-Varshamov bound can be improved by using them, [32]. Later,
Pellikaan, Shen and van Wee [28] noticed that any arbitrary linear code is in
fact an AG-code.

The study of AG codes, which is based on resources from algebraic geometry,
is usually difficult. For example, it is well known that the parameters k and d
(the dimension and the minimum distance) of C(X , D, G) verify

1. k = �(G)− �(G−D), where �(·) denotes the dimension of L(·); and
2. d ≥ d(X , D, G) := n− deg(G) (the Goppa bound).

However the exact determination of k and d is often not possible. If 2g − 2 <
deg(G) < n then the code C(X , D, G) is called strongly AG; in this case, the
Riemann-Roch theorem gives k = deg(G) − 1 + g. In other cases �(G) and/or
�(G − D) are rather difficult to compute. On the other hand, if deg(G) ≥ n,
the above bound on d does not give any information; nevertheless, Munuera [24]

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 117–127, 2008.
c© Springer-Verlag Berlin Heidelberg 2008



118 C. Munuera, A. Sepúlveda, and F. Torres

improved (2) by using another geometric invariant of the curve, see (1) below.
For an integer r ≥ 1, set

γr = γr(X , q) := min{deg(A) : A is a Fq-rational divisor on X with �(A) ≥ r} .

The number γ(X , q) := γ2 and the sequence (γr)r≥1 are called respectively the
gonality (resp. gonality sequence) of X over Fq; cf. [34]. We have

d ≥ n− deg(G) + γa+1 , (1)

where a is the abundance of the code, namely a := �(G−D); unfortunately both
the genus and the gonality sequence of curves are usually very hard to compute.

Other lower bounds on the minimum distance on AG-codes have been de-
veloped by several authors; it seems that the more interesting of them is the
order (or Feng-Rao) bound cf. [19], but it can be applied only to the duals of
one-point AG codes; i.e., those AG codes for which G is a multiple of a rational
point (although there is an analogous for “two-point” AG codes, see [5,27]). We
stress that, in general, the minimum distance of the dual C⊥ of C does not give
information on the minimum distance of C.

Let C(X , D, mQ) be a one-point AG code. The space L(G) is closely related
to the Weierstrass semigroup at Q

S(Q) = {0 = ρ1(Q) < ρ2(Q) < . . .} = {−vQ(f) : f ∈ ∪∞
r=0L(rQ)}

where vQ is the valuation at Q. The element ρ2(Q) is usually called the mul-
tiplicity at (resp. of) Q (resp. S(Q)). As we mentioned above, k = m − 1 + g
for 2g − 2 < m < n. In any case, if ρi(Q) ≤ m < ρi+1(Q) then k = i, so S(Q)
gives the dimension of C(X , D, mQ). Analogously, the computation of the order
bound of the code C(X , D, mQ)⊥ depends also on the semigroup S(Q), see [19].
Therefore, the problems of computing the dimension and the minimum distance
of (the duals of) one-point AG codes go through the problem of computing
Weierstrass semigroups, which is not an easy problem at all.

Fortunately, we know some curves that combine the good properties of hav-
ing a reasonable handling and giving one-point codes with excellent parameters
(some times records in the tables [18]); such curves include the Deligne-Lusztig
varieties of dimension one [6] (namely the projective line, the Hermitian curve,
the Suzuki curve and the Ree curve), the generalized Hermitian curves [9], the
Norm-Trace curves [10], etc. It is natural to ask if these curves share some com-
mon characteristic that motives all these good properties. At the first look, all
the aforementioned curves have ’many’ rational points; as a matter of fact, the
Deligne-Lusztig curves are optimal in the sense that they have the maximum
number of rational points that curves of its genus defined over the same ground
field can have, see [15]. Several bounds on the number of rational points of curves
are available in the literature, see e.g. [30]. For our purposes it is relevant the
one given by Lewittes in [21]: if Q is a rational point of X , then

#X (Fq) ≤ qρ2(Q) + 1 . (2)
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This bound was proved by using the theory of Algebraic Function Fields of
one variable (or see Theorem 1 below). It was recently improved by Geil and
Matsumoto in [11].

In this paper we are interested in curves reaching equality in (2) and for
which the semigroup S(Q) is symmetric (in the sense that ρ ∈ S(Q) if and only
if 2g − 1 − ρ �∈ S(Q)). We shall refer to these curves as Castle curves (here the
word ’castle’ is used to honoring the place where this meeting is realized!). The
aforementioned Norm-Trace curve, the generalized Hermitian curve and Deligne-
Lusztig curves are all of them Castle curves. Also we shall show some common
properties of one-point Goppa codes arising from Castle curves.

2 Castle Curves

Let X be a curve over Fq with (n + 1) Fq-rational points. Write X (Fq) =
{Q, P1, . . . , Pn}. The following Theorem, due to Geil and Matsumoto [11, Thm.
1], gives an upper bound on #X (Fq). It generalizes a previous result of Lewittes
[21, Thm. 1]. For the convenience of the reader we shall include a short proof of
the Lewittes bound.

Theorem 1. Let S(Q) be the Weierstrass semigroup at Q. Set s + S(Q) :=
{s + ρ : ρ ∈ S(Q)} and S∗(Q) := S(Q) \ {0}. Then

#X (Fq) ≤ #(S(Q) \ (qS∗(Q) + S(Q))) + 1 .

In particular #X (Fq) ≤ qρ2(Q) + 1.

Proof. Set ρ2 = ρ2(Q) and let f ∈ L(ρ2Q) be a rational function such that
ρ2 = −vQ(f). Then f q ∈ L(qρ2Q) and ev(f q) = ev(f). Since ev is injective for
m = qρ2 < n = #X (Fq)−1 and f q �= f , we have qρ2 ≥ n, which is the Lewittes’
bound. A similar reasoning leads to the Geil-Matsumoto bound.

Example 1. A rational curve is clearly a Castle curve. A hyperelliptic curve
is a Castle curve if and only if it has just one hyperelliptic rational point and
attains equality in the hyperelliptic bound #{rational nonhyperelliptic points}+
2#{rational hyperelliptic points} ≤ 2q + 2.

Example 2. (The Norm-Trace curve). Let us consider the curve defined over Fqr

by the affine equation

x(qr−1)/(q−1) = yqr−1
+ yqr−2

+ . . . + y

or equivalently by NFqr |Fq
(x) = TFqr |Fq

(y), where the maps N and T are re-
spectively the norm and trace from Fqr to Fq. This curve has 22r−1 + 1 rational
points and the Weierstrass semigroup at the unique pole Q of x is given by

S(Q) = 〈qr−1, (qr − 1)/(q − 1)〉 .

Since every semigroup generated by two elements is symmetric, this is a Castle
curve. Codes on these curves have been studied by Geil, [10].
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Example 3. (Generalized Hermitian curves) For r ≥ 2 let us consider the curve
Xr over Fqr defined by the affine equation

yqr−1
+ . . . + yq + y = x1+q + . . . + xqr−2+qr−1

or equivalently by sr,1(y, yq, . . . , yqr−1
) = sr,2(x, xq , . . . , xqr−1

), where sr,1 and
sr,2 are respectively the first and second symmetric polynomials in r variables.
Note that X2 is the Hermitian curve. These curves were introduced by Garcia
and Stichtenoth in [9] and they have q2r−1 +1 rational points. Let Q be the only
pole of x. Then S(Q) = 〈qr−1, qr−1 + qr−2, qr + 1〉. This semigroup is telescopic
(loc. cit.) and hence symmetric (see e.g. [22]). Therefore, Xr is a Castle curve.
AG-codes based on these curves were studied by Bulygin [4] in the binary case
and by Sepúlveda [29] in the general case.

To show that the Deligne-Lusztig curves are Castle curves, we shall point out
an interesting interplay between Castle curves and Jacobian Varieties of curves
(cf. [8]). Let L(t) be the numerator of the Zeta function of X over Fq. Set

h(t) := t2gL(t−1) .

Then h(t) is monic of degree 2g and its independent term is nonzero. Moreover it
is the characteristic polynomial of the Frobenius morphism ΦJ on the Jacobian
J of X (here we see ΦJ as an endomorphism acting on the Tate module). Let

h(t) =
∏
j

h
rj

j (t)

be the factorization of h(t) in Z[t]. Since ΦJ is semisimple and the representation
of endomorphisms of J on the Tate module is faithfully (see [33, Thm. 2], [20,
VI§3]), it follows that ∏

j

hj(ΦJ ) = 0 . (3)

Let Φ : X → X denote the Frobenius morphism on X . Let π : X → J be the
natural morphism given by P �→ [P −Q], Q ∈ X (Fq). Since π ◦Φ = ΦJ ◦ π, (3)
implies the following equivalence of divisors on X∏

j

hj(Φ)(P ) ∼ mQ , with P ∈ X and m =
∏

j hj(1) . (4)

This suggests to study the linear series C := |mQ|. Remark that C is independent
of the rational point Q, and |m| belongs to the Weierstrass semigroup at any
rational point. Let us write∏

j

hj(t) = tU + α1t
U−1 + . . . + αU−1t + αU .

Proposition 1. Notation as above. Suppose that (i) α1 ≥ 1, (ii) αj+1 ≥ αj for
j = 1, . . . , U − 1, and (iii) #X (Fq) ≥ qαU + 1. Then, for any P ∈ X (Fq) we
have
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1. #X (Fq) = qρ2(P ) + 1;
2. ρ2(P ) = αU ;
3. γ(X , q) = αU .

Proof. We first show that αU is a generic non-gap (that is, a non-gap at a point
which is not a Weierstrass point). In fact, by applying Φ∗ to (4) we get

αUR ∼ ΦU+1(R)+(α1−1)ΦU (R)+(α2−α1)ΦU−1(R)+ . . .+(αU−αU−1)Φ(R).

By (i) and (ii), αU is a non-gap at any point R such that φU+1(R) �= R, i.e., at
any point which is not a fixed point of φU+1. Since the number of fixed points of
this morphism is finite, the claim follows. By standard Weierstrass point theory,
it holds that ρ2(P ) ≤ αU . Thus from (iii) and the Lewittes’ bound (2), we have

qαU + 1 ≤ #X (Fq) ≤ qρ2(P ) + 1 ≤ qαU + 1

and (1), (2) follow. Now set γ = γ(X , q). Then, as γ ≤ αU by definition of γ and
#X (Fq) ≤ (q + 1)γ, (iii) holds as αU ≤ q.

For the definition of the for the Hermitian curve H, the Suzuki curve S, and
the Ree curveR, as well as for their main properties, we refer to the bibliography
[15,16,19,23]. In particular, the polynomials h(t) for these curves are as follows,
see e.g. [15]:

(I) hH(t) = (t + �)2g, where q = �2 and g = �(�− 1)/2;
(II) hS(t) = (t2 + 2q0t + q)g, where q = 2q2

0 > 2 and g = q0(q − 1);
(III) hR(t) = (t2 + q)A(t2 + 3q0t + q)B, where q = 3q2

0 > 3, A = q0(q − 1)(q +
3q0 + 1)/2, B = q0(q2 − 1) and g = 2A + 2B.

By using these polynomials, and after some computations, we obtain the follow-
ing data for any rational point P .

Curve X Hermitian Suzuki Ree
ρ2(P ) = γ(X , q) � q q2

#X (Fq) �3 + 1 q2 + 1 q3 + 1
m 1 + � 1 + 2q0 + q (1 + q)(1 + 3q0 + q))
C |(1 + �)P | |(1 + 2q0 + q)P | |(1 + q)(1 + 3q0 + q)P |

.

In order to study the symmetry of the Weierstrass semigroups associated to these
curves, let us first recall some facts from the Stöhr-Voloch theory, concerning to
a geometric bound on the number of rational points of curves over finite fields
[31]. Let x, y be rational functions such that

div∞(x) = ρ2(P )P and div∞(y) = mP.

Consider the morphism φ = (1 : x : y) : X → P2(Fq). The linear series E
associated to φ is given by the divisors {div(�) + mP : � = a + bx + cy , (a : b :
c) ∈ P2(Fq)}. Let v = vQ denote the valuation at Q ∈ X . For all but finitely
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many points Q, there exist lines �0 = �0(Q), �1 = �1(Q) and �2 = �2(Q), such
that v(�0) = 0, v(�1) = 1 and v(�2) = ε2 > 1, this number being independent
of Q [31, Thm. 1.5]. To deal with rational points, we consider the sequence
0 = ν0 < ν1 where ν1 = 1 or ν1 = ε2 > 1. According to [31, Sect. 2], the last
case occurs if and only if Φ(Q) ∈ div(�2) + mP for all but finitely many points
Q. In our case, the last condition holds true by (4). Thus it holds that

yq − y =
dy

dx
(xq − x) . (5)

Proposition 2. Let P be a rational point of the Hermitian, Suzuki or Ree curve.
Then the Weierstrass semigroup at P is symmetric.

Proof. For Hermitian and Suzuki curves the Weierstrass semigroups are known
and the symmetry follows after some arithmetical computations (although al-
ternative conceptual proofs can be done by using the above reasoning). We shall
omit them. For the Ree curve it seems that the structure of S(P ) (P ∈ X (Fq))
is no available; nevertheless, we can still prove the symmetry property via the
linear series E . Here we have ρ2(P ) = q2 and m = (1 + q)(1 + 3q0 + q). Let
t be a local parameter at P . We will show that v(dx

dt ) = 2g − 2. Remark that
#X (Fq) = q3 + 1 = (q − 3q0 + 1)m and 2g − 2 = (3q0 − 2)m. By applying the
chain rule to (5), and since gcd(m, q) = 1, we have

v(
dx

dt
)− qm = −m− 1− qρ2(P ) = −m−#X (Fq)

or equivalently

v(
dx

dt
) = (q − 1)m−m− (q − 3q0 + 1)m = (3q0 − 2)m.

Example 4. (Castle maximal curves) Let X be a maximal curve of genus g over
Fq, q = �2. Then X is a Castle curve if and only if there exists Q ∈ X (Fq) such
that 1+ �2 +2g� = 1+ �2ρ2(Q). Thus X must be a curve of genus g = �(ρ2(Q)−
1)/2. Apart from the Hermitian curve, such curves do exist. For example:

– The curve defined by y
/2 + y
/22
+ . . .+ y2 + y = x
+1 with � even; here the

genus is �(�−2)/4 and ρ2(Q) = �/2 where Q is the unique pole of x (see [2]);
– The curve defined by y
/3 +y
/9 + . . .+y3 +y = ax
+1, where � is a power of

three, a ∈ Fq with a
−1 = −1; here the genus is �(�− 3)/6 and ρ2(Q) = �/3
at P the unique pole of x (see [3]).

Further examples can be find in [1].

The next Proposition collects some properties of Castle curves. Let us remember
that by γr = γr(X , q) we denote the r-th gonality of X over Fq.

Proposition 3. Let X be a Castle curve with respect to a point Q ∈ X (Fq),
where the multiplicity at Q satisfy ρ2(Q) ≤ q + 1. Then
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1. γ2 = ρ2(Q);
2. γi = ρi(Q) for i ≥ g − γ + 2; that is,

γi = ρi(Q) =
{

i + g − 2 if g − γ + 2 ≤ i ≤ g;
i + g − 1 if i > g;

3. We have the equivalence of divisors on X∑
P∈X (Fq)

P ∼ (qρ2(Q) + 1)Q .

Proof. Set ρi := ρi(Q). (1) We have ρ2 − (ρ2 − 1)/(q + 1) ≤ γ ≤ ρ2 and the
hypothesis on ρ2 implies the result. (2) The statement about the gonalities of
high order follows from the fact that both, the semigroup S(Q) and the set of
gonalities GS(X ) = (γr)r≥1 verify the same symmetry property: for every integer
a, it holds that a ∈ S(Q) (resp. a ∈ GS(X )) if and only if 2g−1−a �∈ S(Q) (resp.
2g − 1 − a �∈ GS(X )), cf. [26]. (3) As we have seen in the proof of Theorem 1,
the code C(X , P1 + . . . + Pn, nQ) is abundant, hence �(nQ−D) = 1.

3 Codes on Castle Curves

Let X be a curve of genus g over Fq with (n + 1) Fq-rational points, X (Fq) =
{Q, P1 . . . , Pn}. Consider the sequence of codes (Cm)m≥1, where Cm = C(X , P1+
. . .+Pn, mQ), and let km, dm be the dimension and the minimum distance of Cm,
respectively. Let S(Q) = {0 = ρ1 < ρ2 < . . .} be the Weierstrass semigroup at
Q. Define the function ι = ιQ : N0 → N by ι(m) = max{i : ρi ≤ m}. Note
that ι(m) = �(mQ). Let us remember that two Fq-codes C1 and C2 of the same
length n, are isometric if there is an n-uple x of nonzero elements in Fq such that
C1 = x ∗C2 := {x ∗ c : c ∈ C2}, where ∗ stands for the coordinate wise product,
see [25].

Proposition 4. If X is a Castle curve with respect to Q, then

1. For m < n, the dimension of Cm is km = ι(m);
2. For m ≥ n, Cm is an abundant code of abundance ι(m − n) and dimension

km = ι(m)− ι(m− n);
3. The dual of Cm is isometric to Cn+2g−2−m;
4. For 1 ≤ m < n, dm reaches Goppa bound if and only if dn−m does;
5. The minimum distance of Cn verifies dn ≥ ρ2(Q).

Proof. (1) Since ev is injective over L(mQ) for m < n, the result follows from
the fact that ι(m) = �(mQ). (2) We have already seen that Cn is abundant.
Thus, in view of Proposition 3, if m ≥ n the abundance of Cm for m ≥ n is
�(mQ−D) = �(mQ−nQ) = ι(m−n). The statement about the dimension follows
trivially. (3) The dual of Cm is C(D, D + W − mQ), where W is a differential
form with simple poles and residue 1 at each Pi (see [25]). Now, in view of
Proposition 3, P1 + . . . + Pn ∼ nQ and (2g − 2)Q ∼ W (as the semigroup S is
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symmetric). Thus P1 + . . . + Pn + W −mQ ∼ (n + 2g− 2−m)Q and codes Cm,
Cn+2g−2−m are isometric, see [25]. (4) For m < n, Cm reaches equality in the
Goppa bound if and only if then there exists D′, 0 ≤ D′ ≤ D such that mQ ∼ D′.
Let D′′ = D−D′. Thus mQ ∼ D−D′′ ∼ nQ−D′′, hence (n−m)Q ∼ D′′ and
the code Cn−m also reaches equality in the Goppa bound. (5) Since γ2 = ρ2,
this is just the improved Goppa bound on the minimum distance.

Remark 1. Since isometric codes have the same parameters, property 3 of the
above Proposition allows us to use the order bound to estimate the minimum
distance of these codes.

Example 5. Let us consider codes on the Suzuki curve S over F8. Here g =
2(8− 1) = 14 and #S(F8) = 82 + 1 = 65.

Let m = 50. We have k50 = 50+1−14 = 37. The Goppa bound gives d50 ≥ 14
and by applying the order bound we in fact obtain a [64, 37,≥ 16] code over F8.
Note that according to the Grassl tables [14], it is not known a [64, 37] code over
F8 having minimum distance d > 16.

Analogously, for m = 73 we obtain a [64, 58,≥ 4] which has the best known
parameters.

Finally, by applying now the bound stated in item 5 of the above proposition
for m = 63, we get a [64, 50,≥ 8] code, again a record. All these facts were
unknown up the the moment, even if the codes are known longtime ago. By the
way, note that the order bound on the minimum distance of this last code gives
d([64, 50]) ≥ 6. This shows that the order bound is not always better that the
improved Goppa bound.

4 A Worked Example

In [7], Deolalikar constructed a subcover of the Garcia-Stichtenoth curve (see
Example 3) in the particular case r = 3. In this section, we generalize his con-
struction obtaining Castle curves.

Proposition 5. Let Xr be a Garcia-Stichtenoth curve over Fqr and let b ∈ F∗
qr

such that TFqr |Fq
(b) = 0, being T the trace function. Then for j = 1, . . . , r − 2,

the curve X j
r defined over Fqr by the affine equation

sr,2(x, xq , . . . , xqr−1
) =

yqj

j −
(

1
bqj−qj−1 + · · ·+ 1

bqj−1

)
yqj−1

j − · · · −
(

1
bq2−q

+
1

bq2−1

)
yq

j −
1

bq−1
yj,

where sr,2 is the second symmetric polynomial, is covered by Xr.

Proof. A covering map c : Xr → X j
r is given by c(x, y) =

(x, yqr−j−1
+(bqr−1−1+· · ·+bqr−j−1+1)yqr−j−2

+· · ·+(bqr−1−1+· · ·+bq2−1+1)y)

Let Qj ∈ X j
r be the only pole of x.



Algebraic Geometry Codes from Castle Curves 125

Proposition 6. The curve X j
r , j = 1, . . . , r−2, verifies the following properties.

1. Qj is totally ramified.
2. The genus of X j

r is g = (qj − 1)qr−1/2.
3. The number of rational points of X j

r is qr+j + 1.
4. The Weierstrass semigroup at Qj ∈ X j

r is S(Qj) =
〈
qj , qr−1 + 1

〉
.

Proof. (1) Q ∈ Xr is totally ramified. (2) and (3) follow from [7, Thm. 3.5]. (4)
It is clear that −vQ(x) = qj . Let us consider the rational function z := x1+q +
x1+q2

+ · · ·+xqr−3+qr−2 −yqj−1

j . Then zq = xq+q2
+xq+q3

+ · · ·+xqr−2+qr−1 −yqj

j

and, by using the defining equation of X j
r , we obtain −vQ(z) = qr−1 + 1. Now,

since the genus of
〈
qj , qr−1 + 1

〉
is g, we get the equality.

In particular, X j
r is a Castle curve. Other consequence of the above Proposition

is the following.

Proposition 7. Let z = x1+q+x1+q2
+· · ·+xqr−3+qr−2−yqj−1

j . Then L(mQj) =〈
{xizk : i · qj + k · (qr−1 + 1) ≤ m, 0 ≤ i and 0 ≤ k < qj}

〉
, for all m ≥ 0.

For m = 0, 1, 2, . . ., we can consider the codes Cj
r,m := C(X j

r , D, mQj
∞), where

D is the sum of all rational points of X j
r except Qj. The length of these codes

is n = qr+j. The dimension and minimum distance can be estimated as shown
in Proposition 4.

Example 6. For q = 2 and r = 3, the curve X 1
3 is hiperelliptic of genus 2 over F8.

It has 17 rational points. By using the order bound, we show that for m = 13
we get a [16, 12, 4] code over F8. Note that, according to the main conjecture on
MDS codes, there is no [16, 12, > 4] code over F8.

When q = 2 and j = 1, then X j
r is a hyperelliptic curve and Qj

∞ a hyperelliptic
point. Let us consider the code C1

r,m = C(X 1
r , D, mQ1∞). Assume m < n. If m is

even then there exists a divisor D′ ≤ D such that D′ ∼ sQ (simply write D′ as
a sum of s/2 pairs of conjugated points). Then the minimum distance of C1

r,m is
d = n−m. Thus, for m odd we have n− s ≤ d(C1

r,m) ≤ n−m + 1. In particular,
for m ≤ 2r−1, if m even then C1

r,m has dimension (m/2)+1 and if m is odd then
C1

r,m = C1
r,m−1. Since this code does not meet the Goppa bound, according to

Proposition 4, item (4), the same happens for m′ = n − m. We conclude that
for m odd, n − 2r−1 ≤ m < n, the code C1

r,m has dimension m + 1 − 2r−2 and
minimum distance n−m + 1.
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Abstract. We determine the Weierstrass semigroup of a pair of rational
points on Norm-Trace curves. We use this semigroup to improve the lower
bound on the minimum distance of two-point algebraic geometry codes
arising from these curves.

1 Introduction

The theory ofWeierstrass semigroups is an important part in the study ofAlgebraic
Geometry (AG) codes. Its use comes from the theory of one-point codes; given a
curve X and a (one point, AG) code C(D, mQ) arising from X , there exist close
conections between the parameters of C(D, mQ) and its dual C(D, mQ)⊥ with the
Weierstrass semigroupH(Q) ofX atQ, see for example [5]. Later these results were
extended to codes and semigroups over two points. Matthews [10] proved that the
Weierstrass gap set of a pair of points may be exploited to define a code with mini-
mum distance greater than the Goppa bound. By using results obtained byHomma
and Kim [6,8], she determined the Weierstrass semigroup of a pair of any twopoints
on a Hermitian curve and, as a consequence, she improved the lower bound on the
minimum distance of codes defined by a linear combination of two points.

Despite the great interest of these codes, its utility is limited by the difficulty
of computing the Weierstrass semigroup of two points. In this paper, we focus our
attention on Norm-Trace curves, which are a natural generalization of Hermitian
curves. We determine the Weierstrass semigroup of a pair of points and use it to
improve the Goppa bound on the minimum distance of the corresponding codes.

The article is organized as follows. In section 2 we introduce some basic facts
and definitions. In section 3 we determine the Weierstrass semigroup of a pair
of points on Norm-Trace curves. By using this semigroup, in section 4 we are
able to improve the lower bound on the minimum distance of two-point codes
and show that these two-point codes can have better parameters than one-point
codes over these curves.

2 Preliminaries

2.1 Curves and Codes

The construction of algebraic geometry codes is well known. Let X be a non-
singular, projective, geometrically irreducible, algebraic curve of genus g over a

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 128–136, 2008.
c© Springer-Verlag Berlin Heidelberg 2008
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finite field Fq. For a rational divisor E onX , we consider the vector spaces L(E) :=
{rational functions f : (f) + G ≥ 0} ∪ {0} and Ω(E) := {rational differential
forms ω : (ω) + G ≥ 0} ∪ {0}. Let G and D = P1 + . . . + Pn be two divisors on X
such that Pi �= Pj for i �= j and supp(G) ∩ supp(D) = ∅. The algebraic geometry
codes CL(D, G) (or simply C(D, G)) and CΩ(D, G) are defined by (see [11])

C(D, G) := {(f(P1), . . . , f(Pn)) ; f ∈ L(G)}

CΩ(D, G) := {(resP1(ω), . . . , resPn(ω)) ; ω ∈ Ω(G−D)}.
C(D, G) and CΩ(D, G) are dual to each other. Their minimum distances verify
dL ≥ n− deg(G) and dΩ ≥ deg(G)− 2g + 2 (the Goppa bound). If G = aQ ≥ 0
for some rational point Q on X and D it is the sum of all the other rational
points, then they are called one-point. Analogously, if G = aQ1 + bQ2 for two
distinct rational points, then C(D, G) and CΩ(D, G) are called two-point codes.

2.2 Weierstrass Semigroups

Let Q be a rational point on X . It is well known that the set

H(Q) := {n ∈ N0 : there exists a rational function f with (f)∞ = nQ}

is a semigroup, called the Weiertrass semigroup of X at Q. Its complement,
G(Q) := N0 \H(Q) is the Weierstrass gap set of Q. It has precisely g elements.
These definitions can be translated to the two-point case. For given two distinct
rational points Q1 and Q2 on X the semigroup of N2

0

H(Q1, Q2) = {(n, m) ∈ N2
0 : there exists a rational function f with

(f)∞ = nP1 + mP2}

is the Weierstrass semigroup of X at Q1 and Q2. The set G(Q1, Q2) := N2
0 \

H(Q1, Q2) is called the Weierstrass gap set of the pair (Q1, Q2). It is always
finite, and its cardinality depends on Q1 and Q2.

2.3 The Norm-Trace Curve

Let q be a prime power and let r ≥ 2 an integer. The curve Xq,r defined over
Fqr by the affine equation

x
qr−1
q−1 = yqr−1

+ yqr−2
+ . . . + y

is called the Norm-Trace curve. If r = 2 then it is a Hermitian curve. Note that
the zeros of x

qr−1
q−1 −(yqr−1

+yqr−2
+ . . .+y) = 0 in F2

qr are the pairs (α, β) ∈ F2
qr

such that NFqr /Fq
(α) = TFqr /Fq

(β), where N stands for the norm and T for the
trace.

The Norm-Trace curve has been studied in detail by Geil, [3]. Xq,r has a single
rational point at infinity, P∞ = (0 : 1 : 0), plus q2r−1 affine rational points. Its

genus is g = (qr−1 − 1)(
qr − 1
q − 1

− 1)/2.
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3 The Weierstrass Semigroup H(P0,0, P∞) for
Norm-Trace Curves

TheWeierstrass semigroupofXq,r atP∞ iswell known.LetPa,b denote the common
zero of x− a and y − b, where a, b ∈ Fqr . The divisors of x and y are given by

(x) = P0,0 +
∑
α

P0,α − qr−1P∞ , (y) =
(qr − 1)
q − 1

P0,0 −
(qr − 1)
q − 1

P∞ (1)

where α runs over the roots of tq
r−2

+ . . . + t + 1 = 0. Using these functions and
the fact that |G(P∞)| = g, we can prove that H(P∞) =

〈
qr−1, (qr − 1)/(q − 1)

〉
,

[3]. Let us study now the semigroup over two points.

3.1 The Weierstrass Semigroup H(P0,0, P∞) for q = 2

In this section we restrict to the binary case, q = 2. Furthermore we shall
assume r ≥ 3 (if r = 2 we get the Hermitian curve). Then the curve has genus
g = (2r−1 − 1)2 and H(P∞) = 〈2r−1, 2r − 1〉.

Proposition 1. Let γ = 2r − 2. The Weierstrass semigroup of X2,r at P0,0 is
given by

H(P0,0) = 〈γ, γ + 1, 2γ − 1, 3γ − 2, . . . ,
γ

2
γ − (

γ

2
− 1)〉.

Proof. From 1 we have(
x

y

)
∞

= (2r − 2)P0,0 and
(

1
y

)
∞

= (2r − 2)P0,0.

Furthermore, given an integer m, 0 ≤ m < 2r−2 + 2r−3 + . . . + 2,(
x2m+2+1

ym+2

)
∞

= ((2(m + 1)−m)(2r − 1)− (m + 1))P0,0.

Thus γ, γ + 1, 2γ − 1, 3γ − 2, . . . , γ
2γ − (γ

2 − 1) ∈ H(P0,0). To see the equality it
is enough to prove that the semigroup 〈γ, γ +1, 2γ− 1, 3γ− 2, . . . , γ

2 γ− (γ
2 − 1)〉

has g = (2r−1 − 1)2 gaps. A simple computation shows that |G(P0,0)| = (γ −
1) + (γ − 3) + (γ − 5) + . . . + 3 + 1 = (2r−1 − 1)2 = g.

Once the semigroups H(P0,0), H(P∞) are known, let us study the semigroups
over two points. Given Q1, Q2 ∈ X2,r(F2r ), for α ∈ G(Q1) we define βα :=
min{β ∈ N0 ; (α, β) ∈ H(Q1, Q2)}. It is known, [8], that {βα ; α ∈ G(Q1)} =
G(Q2). Let α1 < α2 < . . . < αg be the gap sequence at Q1 and β1 < β2 < . . . <
βg be the gap sequence at Q2. The above equality implies that there exist a one-
to-one correspondence between G(Q1) and G(Q2) so that βαi = βσ(i), where σ
is a permutation of the set {1, 2, . . . , g}. We will often denote this permutation
by σ(Q1, Q2) and the graph of the bijective map between G(Q1) and G(Q2) by
Γ (Q1, Q2), that is

Γ (Q1, Q2) := {(αi, βσ(i)) : i = 1, 2, . . . , g} = {(αi, βαi) : i = 1, 2, . . . , g}.
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Lemma 1. Let Γ ′ be a subset of (G(Q1)×G(Q2)) ∩H(Q1, Q2). If there exists
a permutation τ of {1, . . . , g} such that Γ ′ = {(αi, βτ(i)) : i = 1, . . . , g}, then
Γ ′ = Γ (Q1, Q2).

Proof. From the definition of σ = σ(Q1, Q2) we have βτ(i) ≥ βσ(i) for all i =
1, . . . , g. Thus τ = σ.

Theorem 1. Let us consider the two-point semigroup H(P∞, P0,0). It holds that

β2(i−j)a+j = (2a− 1)j − 2i , 1 ≤ j ≤ i ≤ a− 1, and

β(2(i−j)+1)a+j = (2a− 1)− (2i + 1) , 1 ≤ j ≤ i ≤ a− 2,

where a = 2r−1.

Proof. Let us prove the first statement. By the structure of G(P∞) and G(P0,0),
for every pair (i, j) such that 1 ≤ j ≤ i ≤ a−1, it holds that 2(i−j)a+j ∈ G(P∞)
and j(2a− 1)− 2i = 2(j − 1)(a− 1) + (2(a− 1)− 2i + j) ∈ G(P0,0). Let us first
show that 2(i− j)a+ j �= 2(i′− j′)a+ j′ if i �= i′ or j �= j′ (*). If this assertion is
false, there exist two pairs (i, j) �= (i′, j′) such that 2(i−j)a+j = 2(i′−j′)a+j′.
If i − j = i′ − j′, then 2(i − j)a + j = 2(i′ − j′)a + j′ hence (i, j) = (i′, j′).
Therefore i− j �= i′− j′. Assume i− j > i′− j′. Then i− j = i′− j′ +k, for some
0 < k ∈ N and hence 2(i′ − j′ + k)a + j = 2(i′ − j′)a + j′ so j′ = 2ak + j,which
is a contradiction because 1 ≤ j, j′ ≤ a − 1. Then (*) is proved. Let us prove
now that j(2a − 1) − 2i �= j′(2a − 1) − 2i′ if (i, j) �= (i′, j′) (**). Suppose
again that this assertion is false. Thus there exist (i, j) �= (i′, j′) such that
j(2a − 1) − 2i = j′(2a − 1) − 2i′. Since j(2a − 1) − 2i = j′(2a − 1) − 2i′, we
have i �= i′ and j �= j′. Write i = i′ + k, with k ∈ N, 1 ≤ k < a − 1. Thus
j(2a − 1) = j′(2a − 1) + 2k hence (j − j′)(2a − 1) = 2k < 2a − 1, which
contradicts j �= j′. This proves (**). Now, for 1 ≤ j ≤ i ≤ a− 1, we have(

x2i

yj

)
∞

= (2(i− j)a + j)P∞ + (j(2a− 1)− 2i)P0,0

and hence (2(i− j)a+ j, j(2a−1)−2i) ∈ H(P∞, P0,0). Thus, if αl = 2(i− j)a+ j
and βl′ = j(2a−1)−2i, for l, l′ = 1, . . . , g, we have (αl, βl′) ∈ (G(P∞)×G(P0,0))∩
H(P∞, P0,0). Let τ be a permutation of {1, . . . , g} such that τ(l) = l′. By Lemma
1, Γ ′ = {(αl, βτ(l) : l = 1, . . . , g} = Γ (P∞, P0,0) so β2(i−j)a+j = (2a−1)j−2i for
1 ≤ j ≤ i ≤ a−1. This proves the first statement. The second one is proved in the
same way, by using that β(2(i−j)+1)a+j = (2a−1)−(2i+1) for 1 ≤ j ≤ i ≤ a−2.

This Theorem allows us to compute Γ (P0,0, P∞), and hence H(P0,0, P∞) as
follows. Given x = (α1, β1),y = (α2, β2) ∈ N2

0, the least upper bound (or lub) of
x and y is defined as

lub(x,y) := (max{α1, α2}, max{β1, β2}).
It is well known that for x,y ∈ H(Q1, Q2), we have lub(x,y) ∈ H(Q1, Q2)
(see [8]).

Lemma 2. Let Q1 and Q2 be two distinct rational points. Then H(Q1, Q2) =
{lub(x,y) : x,y ∈ Γ (Q1, Q2) ∪ (H(Q1)× {0}) ∪ ({0} ×H(Q2))}.
Proof. See [8] Lemma 2.2.
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3.2 The Weierstrass Semigroup H(P0,0, P∞) for Any q

Let us study now the general case. Set a = ((qr − 1)/(q − 1))− 1. We have the
pole divisors (

x

y

)
∞

= aP0,0 ,

(
1
y

)
∞

= (a + 1)P0,0,

and for 0 ≤ m ≤ qr−2 + qr−3 + . . . + q − 1,(
xmq+q+1

ym(q−1)+q

)
∞

= (((m + 1)q −m)a− (m + 1))P0,0.

Proposition 2. The Weierstrass semigroup H(P0,0) is given by

H(P0,0) = 〈a, a+1, qa−1, (2q−1)a−2, (3q−2)a−3, . . . , ((λ+1)q−λ)a−(λ+1)〉

where λ = qr−2 + qr−3 + . . . + q − 1.

Proof. Since all integers a, a+1, qa−1, (2q−1)a−2, (3q−2)a−3, . . . , ((λ+1)q−
λ)a− (λ + 1) are elements of H(P0,0), it is enough to show that this semigroup
has g gaps. The proof of this fact is analogous to the case q = 2.

Theorem 2. Let q be a prime power, r ≥ 3 and a = qr−1 + qr−2 + . . . + q2 + q.
Let us consider the semigroup H(P0,0, P∞). Then for every s such that 1 ≤
s ≤ qr−2 + . . . + q + 1 and every pair (i, j) with 1 ≤ j ≤ i ≤ a − s and
(s− 1)q − (s− 1) ≤ i− j ≤ sq − (s + 1), we have

β(i−j)(a+1)+j = (qr−1 − (i− j + 1))(a + 1)− jqr−1.

Proof. Let us first prove that when (i, j) �= (i′, j′) then (i− j)(a + 1)+ j �= (i′−
j′)(a+1)+j′. Suppose that this assertion is false. Thus there exist (i, j) �= (i′, j′)
such that (i− j)(a + 1) + j = (i′ − j′)(a + 1) + j′. Since i− j �= i′ − j′, we can
write i − j = i′ − j′ + m, with 1 ≤ m ≤ q − 1. Thus m(a + 1) + j = j′, which
is not possible, because 1 ≤ j′ ≤ a − 1. Now, let us show that the numbers
(qr−1− (i− j +1))(a +1)− jqr−1 are distinct for distinct pairs (i, j). Otherwise
there exist (i, j) �= (i′, j′) such that (qr−1− (i− j + 1))(a + 1)− jqr−1 = (qr−1−
(i′−j′+1))(a+1)−j′qr−1. As above we have i−j �= i′−j′. Write i−j = i′−j′+m,
1 ≤ m ≤ q − 1. Thus (j − j′)qr−1 = m(a + 1) = m(qr−1 + . . . + q + 1), hence
qr−1 divides m(qr−1 + . . . + q + 1), a contradiction. Finally, let us see that
the numbers (qr−1 − (i − j + 1))(a + 1) − jqr−1 are gaps at P∞. Otherwise, if
(qr−1− (i0− j0 +1))(a+1)− j0q

r−1 ∈ 〈qr−1, qr−1 + . . .+q+1〉 for a pair (i0, j0),
then there exist positive integers α, β, such that

αqr−1 + β(qr−1 + . . . + q + 1) = (qr−1 − (i0 − j0 + 1))(a + 1)− j0q
r−1

= (qr−1 − (i0 − j0 + 1))(qr−1 + . . . + q + 1)− j0q
r−1

and hence (α + j0)qr−1 = (qr−1 − (i0 − j0 + 1 + β))(qr−1 + . . . + q + 1). We
have α + j0 > 0 and i0 − j0 + 1 + β > 0, so qr−1 divides (qr−1 − (i0 − j0 + 1 +
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β))(qr−1 + . . . + q + 1), a contradiction because qr−1 − (i0 − j0 + 1 + β) < qr−1

and q is a prime power.
By Proposition 2, it holds that (i−j)(a+1)+j ∈ G(P0,0). Then, by considering

the pole divisor(
xa+1−j

yi−j+1

)
∞

= ((i− j)(a + 1)+ j)P0,0 + ((qr−1− (i− j + 1))(a +1)− jqr−1)P∞

we conclude that ((i − j)(a + 1) + j, (qr−1 − (i − j + 1))(a + 1) − jqr−1) ∈
(G(P0,0)×G(P∞)) ∩H(P0,0, P∞). Let α1 < . . . < αg and β1 < . . . < βg be the
gap sequences of P0,0 and P∞. Let τ be the permutation of {1, . . . , g} such that
βτ(l) = (qr−1−(i−j+1))(a+1)−jqr−1 if αl = (i−j)(a+1)+j, l = 1, . . . , g. Then
Γ ′ = {(αl, βτ(l)) : l = 1, . . . , g} ⊆ (G(P0,0)×G(P∞)) ∩H(P0,0, P∞), hence Γ ′ =
Γ (P0,0, P∞) by Lemma 1. Thus β(i−j)(a+1)+j = (qr−1−(i−j+1))(a+1)−jqr−1

and the proof is done.

4 Codes on Norm-Trace Curves

In this section we will show how the knowledge of the Weierstrass semigroup
H(P0,0, P∞) on Norm-Trace curves Xq,r , can be used to improve the parameters
of the corresponding codes. Our starting point is the following result, due to
Matthews [10].

Theorem 3. Assume that (α1, α2) ∈ G(Q1, Q2) with α1 ≥ 1 and l(α1Q1 +
α2Q2) = l((α1 − 1)Q1 + α2Q2). Suppose (γ1, γ2 − t− 1) ∈ G(Q1, Q2), for all t,
0 ≤ t ≤ min{γ2−1, 2g−1−(α1+α2)}. Let G = (α1+γ1−1)Q1+(α2+γ2−1)Q2

and D =
∑n

j=1 Pj , where Q1, Q2, P1, . . . , Pn are distinct Fq-rational points. If
the dimension of CΩ(D, G) is positive, then its minimum distance is at least
deg(G)− 2g + 3.

This Theorem can be improved for Norm-Trace curves as follows.

Theorem 4. Let us consider the code CΩ(D, G) arising from the curve Xq,r,
with G = (α1 + γ1− 1)P0,0 +(α + γ− 1)P∞ and D =

∑n
j=1 Pj, where the points

P0,0, P∞, P1, . . . , Pn are rational and distinct. Suppose that

a) α ≥ 1, (α1, α) ∈ G(P0,0, P∞) and l(α1P0,0 + αP∞) = l(α1P0,0 + (α− 1)P∞).

b) (γ1− t−1, γ), (γ1− t−1, γ +1), (γ1− t−1, γ +
qr − 1
q − 1

), (γ1, γ) ∈ G(P0,0, P∞),

for all t, 0 ≤ t ≤ min{γ1 − 1, 2g − 1− (α1 + α)}.
Under these conditions, if the dimension of CΩ(D, G) is positive, then its

minimum distance at least deg(G)− 2g + 4.

Proof. By Theorem 3, the minimum distance of the code C = CΩ(D, G) is at
least deg(G)−2g+3. Let d = deg(G)−2g+3. If there exists a codeword c ∈ C of
weight d, then there exists a differential ω ∈ Ω(G−D) with exactly d simple poles
in the set {P1, . . . , Pn}. Let Q1, . . . , Qd be such poles. Now deg(ω) = 2g − 2 =
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deg(G)−d+1, that is, (ω) ≥ G−(Q1+. . .+Qd). So (ω) = G−(Q1+. . .+Qd)+P ,
where P is a Fqr -rational point, with P �= Qi, for 1 ≤ i ≤ d. On the other hand,
since l(α1P0,0 +αP∞) = l(α1P0,0 +(α− 1)P∞), by the Riemann-Roch Theorem
we have that l(W − (α1P0,0 +αP∞)) = l(W − (α1P0,0 +(α−1)P∞))−1, that is,
L(W −(α0,0P1 +(α−1)P∞)) �= L(W −(α1P0,0 +αP∞)), where W is a canonical
divisor. Thus, there exists a rational function h such that

(h) = (α − 1)P∞ + (α1 + t)P0,0 −W + E,

where E is a effective divisor whose support does not contain neither P0,0 nor
P∞, and 0 ≤ t ≤ 2g − 1− (α1 + α) because deg(h) = 0. Thus

(ω) = G− (Q1 + . . . + Qd) + P = (ω) ∼ W ∼ (α− 1)P∞ + (α1 + t)P0,0 + E

and since G = (α1 +γ1−1)P0,0 +(α+γ−1)P∞, there exists a rational function
f such that

(f) = −γP∞ − (γ1 − t− 1)P0,0 − P + (Q1 + . . . + Qd) + E.

Let us show that this is impossible. To that end we shall consider two cases.

Case 1. t ≤ γ1 − 1. If P ∈ supp(E), then (f)∞ = γP∞ + (γ1 − t − 1)P0,0,
contradicting the fact that (γ1−t−1, γ) ∈ G(P0,0, P∞). If P = P∞, then (f)∞ =
(γ +1)P∞+(γ1− t−1)P0,0, contradicting again the fact that (γ1− t−1, γ+1) ∈
G(P0,0, P∞). The same occurs if P = P0,0, because then (γ1−t, γ) ∈ H(P0,0, P∞).
Finally, if P = Pj for some Pj �∈ {Q1, . . . , Qd}, since (y) = ((qr−1)/(q−1))P0,0−
((qr − 1)/(q − 1))P∞, we have (f.y)∞ = (γ +

qr − 1
q − 1

)P∞ + (γ1 − t − 1)P0,0,

contradicting (γ1 − t− 1, γ + (qr − 1)(q − 1)) ∈ G(P0,0, P∞).

Case 2. γ1 − 1 < t ≤ 2g − 1 − (α1 + α). A similar reasoning shows that when
P ∈ supp(E) or P = P0,0 then γ is a gap. If P = P∞ then γ +1 is a gap. Finally,
if P = Pj for some Pj �∈ {Q1, . . . , Qd}, then γ+(qr−1)(q−1) is a gap. Therefore
d ≥ deg(G) − 2g + 4.

Let us remember that given a [n, k, d] code C, we define its information rate
by R = k/n and its relative minimum distance by δ = d/n. These parameters
allows us to compare codes of different length. Our final result states that two-
point codes from Norm-Trace curves can have better relative parameters than
the corresponding one-point codes. More precisely, we have the following.

Theorem 5. There are two-point codes CΩ(D, G) on Xq,r of length |Xq,r| − 2,
having relative parameters better than every one-point code CL(D, mqr−1P∞)
on Xq,r.

Proof. Let us consider the one-point code CL(D, mqr−1P∞), where D is the sum
of all q2r−1 affine rational points. As we know, these points are either of the form
(0, α

(0)
s ), being the α

(0)
s ’s the roots in Fqr of yqr−1

+yqr−2
+ . . .+y = 0, or of the
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form (αj , α
(j)
s ), 0 ≤ j ≤ qr − 2, where α is a generator of F∗

qr and the α
(j)
s ’s are

the roots in Fqr of yqr−1
+yqr−2

+ . . .+y = αj . Let d be the minimum distance of
CL(D, mqr−1P∞). The function f =

∏m
i=1(x − αi) ∈ L(mqr−1P∞), has mqr−1

zeros and hence it gives a codeword of weight q2r−1−mqr−1. On the other hand,
by the Goppa bound we have that d ≥ n − deg(G) = q2r−1 −mqr−1. Thus we
have equality, d = q2r−1−mqr−1. On the other hand, it is easy to compute that
the dimension of this code is k = mqr−1 − g + 1.

Now let us consider the two-point code CΩ(D, G), where D =
∑q2r−1−1

j=1 Pj ,
Pj �= P0,0, P∞ and G = P0,0 + (q2r−1 + 2g −mqr−1 − 4)P∞. Its length is n =
q2r−1−1. Its dimension is easy to compute: according to the Goppa’s estimates,
and since deg(G) > 2g − 2, deg(W −G + D) ≥ 2g − 2, where W is a canonical
divisor, we have dim(CΩ(D, G)) = i(G−D) = l(W −G + D) = mqr−1 − g + 1.
Finally its minimum distance can be estimated by using Theorem 3. To see
this note that (α1, α) = (1, 2g − 2) ∈ G(P0,0, P∞) by Theorem 2; furthermore
for all m such that qr − (qr−1 + qr−2 + . . . + q2 + q) + q ≤ m < qr, we have
(γ1, γ) = (1, q2r−1 − mqr−1 − 1) ∈ G(P0,0, P∞), and these pairs satisfy the
condition (γ1, γ − t − 1) ∈ G(P0,0, P∞) for all t in the range 0 ≤ t ≤ min{γ −
1, 2g − 1 − (α1 + α)}. Therefore the minimum distance of CΩ(D, G) at least
deg(G)− 2g + 3 = q2r−1 −mqr−1.

Then CΩ(D, G) has relative parameters R, δ, better than the corresponding
of CL(D, mqr−1P∞).

Example 1. Take q = r = 3 and let us consider the Norm-Trace curve X3,3 of
genus g = 48 over F27. With the same notation as in Theorem 2, we have a = 12
and 1 ≤ s ≤ 4. The Weierstrass semigroups are as follows,
• H(P∞) = 〈9, 13〉, hence G(P∞) = {1, 2, 3, 4, 5, 6, 7, 8, 10, 11, 12, 14, 15, 16,

17, 19, 20, 21, 23, 24, 25, 28, 29, 30, 32, 33, 34, 37, 38, 41, 42, 43, 46, 47, 50, 51, 55, 56,
59, 60, 64, 68, 69, 73, 77, 82, 86, 95};
• H(P0,0) = 〈12, 13, 35, 58, 81〉, hence G(P0,0) = {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11

14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 27, 28, 29, 30, 31, 32, 33, 34, 40, 41, 42, 43, 44, 45,
46, 53, 54, 55, 56, 57, 66, 67, 68, 69, 79, 80, 92}.

Thus, by using Theorem 2, we get Γ (P0,0, P∞) = {(1, 95), (2, 86), (3, 77),
(4, 68), (5, 59), (6, 50), (7, 41), (8, 32), (9, 23), (10, 14), (11, 5), (14, 82), (15, 73),
(16, 64), (17, 55), (18, 46), (19, 37),(20, 28), (21, 19), (22, 10), (23, 1), (27, 69),
(28, 60), (29, 51), (30, 42), (31, 33), (32, 24), (33, 15), (34, 6), (40, 56), (41, 47),
(42, 38), (43, 29), (44, 20), (45, 11), (46, 2), (53, 43), (54, 34), (55, 25), (56, 16),
(57, 7), (66, 30), (67, 21), (68, 12), (69, 3), (79, 17), (80, 8), (92, 4)},
and by Lemma 2,
• H(P0,0, P∞) = {lub(x,y : x,y ∈ Γ (P0,0, P∞) ∪ (H(P0,0) × {0}) ∪ ({0} ×

H(P∞))}.
Now let us consider the codes CL(D, 180P∞) and CΩ(D, P0,0+155P∞), where

D is the sum of all 243 affine rational points and D =
∑

Pj , Pj �= P0,0, P∞.
The relative parameters of code CL(D, 180P∞) are δ1 = 63/243 and R1 =
133/243. Using Theorems 3 and 5, the relative parameters of the two-point code
CΩ(D, P0,0 + 155P∞) are δ2 ≥ 63/242 and R2 = 133/242.
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Abstract. Complex arrays with good aperiodic properties are charac-
terised and it is shown how the joining of dimensions can generate se-
quences which retain the aperiodic properties of the parent array. For
the case of 2× 2× . . .× 2 arrays we define two new notions of aperiodic-
ity by exploiting a unitary matrix represention. In particular, we apply
unitary rotations by members of a size-3 cyclic subgroup of the local
Clifford group to the aperiodic description. It is shown how the three no-
tions of aperiodicity relate naturally to the autocorrelations described by
the action of the Heisenberg-Weyl group. Finally, after providing some
cryptographic motivation for two of the three aperiodic descriptions, we
devise new constructions for complementary pairs of Boolean functions
of three different kinds, and give explicit examples for each.

Keywords: Aperiodic autocorrelation, complementary sequences, local
Clifford group, Heisenberg-Weyl group, Boolean functions, Pauli group,
quantum codes, graph states.

1 Introduction

Boolean functions with desirable properties are required in many fields, and are
used, in particular, as components in both cryptosystems and communications
systems [17]. In the former, one typically requires the Boolean function to be
robust to linear and differential approximations [8], and in the latter, one re-
quires the one-dimensional sequences derived from Boolean functions, to have
an ‘evenly-spread’ Fourier spectrum and low magnitude out-of-phase autocorre-
lation sidelobes [21]. Such technical demands are often met by Boolean functions
and sequences which are spectrally optimal in a periodic sense, that is they have
Fourier spectra which are well-controlled at certain spectral points. However,
at least for sequences for communications, one often requires an evenly-spread
Fourier spectrum over a continuum of points [10]. This translates into a require-
ment for low magnitude out-of-phase aperiodic autocorrelation sidelobes [12].
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Constructions of Boolean functions with good aperiodic properties is not a well-
developed area of research in cryptography [12,9].

In this paper we start by considering the problem of designing bipolar se-
quences with good aperiodic properties. We then extend this problem to the
design of bipolar arrays with good aperiodic properties and show how, for ‘per-
fect’ arrays, their aperiodic properties can be carried over to related sequences,
where the sequences are obtained from the arrays by recursive joining of dimen-
sions [22,23,13] We also show how to interpret this relationship in the Fourier
domain.

We then focus on the construction of bipolar arrays in Cn
2 , which can be

described by generalised Boolean functions, where these functions have good
aperiodic properties [9]. By re-expressing the autocorrelation and Fourier prop-
erties of these functions using unitary matrix terminology, we view our problem
within a wider context, where the multidimensional continuous discrete Fourier
transform is a tensor product of members of an infinite-size set of 2 × 2 uni-
tary matrices [25,19,28]. We call this set of 2 × 2 unitaries the type-I set. We
then identify a size-3 cyclic subgroup, T, of the local Clifford group, comprising
2 × 2 unitaries, where T = {I, λ, λ2}, and, by right-multiplication (rotation) of
each member of the type-I set by λ, the generator of T, and by λ2, we generate
two more infinite-size sets of 2 × 2 unitary matrices, respectively, namely the
type-II and type-III sets. The problem of constructing arrays in Cn

2 (generalised
Boolean functions) with good aperiodic autocorrelation properties is related to
the flatness of the spectrum resulting from the multiplicative left-action of any
matrix which is a tensor product of type-I unitaries on the array. Further, the
type-II and type-III matrix sets highlight new ‘aperiodic’ questions for the array.
Therefore we consider three different kinds of aperiodic property of a Boolean
function, where the ‘type-I’ kind relates to conventional aperiodicity.

Having characterised type-I, type-II, and type-III aperiodicity, we then give
some cryptographic meaning to the properties possessed by Boolean functions
which are type-I or type-II optimal. We also place the three kinds of array into
a more general context by considering arrays which are optimal, in some sense,
with respect to the action of the Heisenberg-Weyl (or Pauli) group [11]. Type-I,
II, and III properties relate to the action of the Heisenberg-Weyl group under
some restrictions. Moreover, those quadratic Boolean functions which represent
one-dimensional quantum codes with good distance [9,4] also have good proper-
ties with respect to the action of the Heisenberg-Weyl group.

We would particularly like to construct Boolean functions with perfect aperi-
odic properties (i.e. whose aperiodic autocorrelation sidelobes are of zero mag-
nitude), as applying the joining described above would preserve these perfect
properties, but such functions do not exist, so we therefore propose to construct
pairs of Boolean functions whose out-of-phase aperiodic sidelobes sum to zero.
These are, by definition, Golay complementary array pairs. A construction exists
for complementary sequences, as proposed by Golay [14,15], and Shapiro-Rudin
[31], and later generalised by Turyn [30]. Pairs of Boolean functions constructed
via an array form of the Golay-Turyn [24,23,13] construction have optimised
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type-I properties. We call such a pair a type-I pair. By rotating a type-I pair by
λ and by λ2, respectively, we obtain a type-II pair, and a type-III pair, respec-
tively. But a more general result can be obtained by rotating the Golay-Turyn
construction itself. By rotating the Golay-Turyn construction by λ and by λ2 we
obtain two ‘new’ constructions which we call type-II and type-III complementary
constructions, respectively. In particular, in addition to the type-I complemen-
tary pairs, this allows us to construct, directly, pairs of Boolean functions which
are type-II and type-III complementary, respectively.

We finish by presenting some open problems arising from the paper.

2 Aperiodic Autocorrelation and the Continuous Fourier
Transform

Let Ã ∈ CN = (Ã0, Ã1, . . . , ÃN−1) be a finite sequence of N complex numbers,
where we take the convention that neither of the two end elements, Ã0 and ÃN−1,
are zero. We represent the sequence Ã by the polynomial Ã(y) = Ã0+Ã1y+. . .+
ÃN−1y

N−1. The aperiodic autocorrelation of Ã is then given by the coefficients
of KÃ(y) = KÃ1−N

y1−N + . . .+KÃ−1
y−1 +KÃ0

y0 +KÃ1
y1 + . . .+KÃN−1

yN−1,
where

KÃ(y) =
Ã(y)Ã∗(y)
||Ã||2

,

where Ã∗(y) = Ã(y−1), and x means x with complex-conjugated coefficients.
We desire all out-of-phase sidelobes of the aperiodic autocorrelation of Ã to
be of low magnitude, which means that we want KÃj

to have low magnitude
∀j �= 0. Ideally we would like all KÃj

= 0 for j �= 0, in which case KÃ(y) = 1 is
called a δ-function, independent of y, but this is impossible for N ≥ 2. We later
discuss how to obtain an ideal (δ-function) response for the sum of the aperiodic
autocorrelations of a pair of sequences.

The continuous Fourier power spectrum of Ã is the set of evaluations of KÃ(y)
on the unit circle and is summarised by

F(Ã) = {KÃ(υ) | |υ| = 1}.

If Ã had a perfect response then F(Ã) = {1}, i.e. the Fourier power spectrum
would be flat. More realistically, if Ã has a near-perfect aperiodic autocorrelation
response then, loosely, its Fourier power spectrum is near-flat. We later discuss
how to obtain a flat power spectrum for the sum of the Fourier power spectra of
a pair of sequences, implying that the power spectrum for each member of the
pair is near-flat.

3 Aperiodic Autocorrelation of Arrays and the
Multi-dimensional Continuous Fourier Transform

Let A ∈ CN0×CN1×. . .×CNn−1 be an n-dimensional array with
∏n−1

j=0 Nj complex
elements where, to avoid degeneracy, we take the convention that no ‘surface’ of
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the array can have elements which are all zero, i.e. for each dimension index, h,
the set of elements {A0,...,0,k,0,...,0 | ∀k} and
{AN0−1,...,Nh−1−1,k,Nh+1−1,...,Nn−1−1 | ∀k} must each include at least one non-
zero entry. The aperiodic autocorrelation, KA(z), of A is given by

KA(z) =
A(z)A∗(z)
||A||2 , (1)

where z = (z0, z1, . . . , zn−1), z−1 = (z−1
0 , z−1

1 , . . . , z−1
n−1), and the coefficients of

A(z) are the array elements of A, i.e.
A(z) =

∑
j∈ZN0×ZN1×...×ZNn−1

Ajz
j0
0 zj1

1 . . . z
jn−1
n−1 . We desire all out-of-phase

sidelobes of the aperiodic autocorrelation of A to be of low magnitude, which
means that we want KAj to have low magnitude ∀j ∈ ZN0 ×ZN1 × . . .×ZNn−1 ,
j �= 0. Ideally we would like all KAj = 0 for j �= 0, in which case KA(z) = ||A||2
is a δ-function, independent of z, but, as with the sequence case, this is impos-
sible. We later discuss how to obtain an ideal (δ-function) response for the sum
of the aperiodic autocorrelations of a pair of arrays.

The continuous Fourier power spectrum of the array A is given by the set of
evaluations of KA(z) on the multi-unit circle, and is summarised by

F(A) = {KA(υ) | |υj| = 1, 0 ≤ j < n}, (2)

where υ = (υ0, υ1, . . . , υn−1). If A had a perfect response then F(A) = {1},
i.e. the Fourier power spectrum would be flat everywhere. More realistically, if
A has a near-perfect aperiodic autocorrelation then, loosely, its Fourier power
spectrum is near-flat. We later discuss how to obtain a flat power spectrum for
the sum of the Fourier power spectra of a pair of Golay complementary arrays.

4 Sequences Obtained by Joining Array Dimensions

Let A be a N = N0 ×N1 × . . .× Nn−1 complex array of n dimensions, as rep-
resented by the polynomial A(z) = A(z0, z1, . . . , zn−1). Then, by substituting
into A(z) the variables z0 = y, and zk = z

Nk−1
k−1 , ∀k, 1 ≤ k < n, we obtain

the univariate polynomial Ã(y) whose coefficients represent a sequence of length
N . The important point about these substitutions is that they ensure that the
elements of both the array, A, and derived sequence, Ã, are taken from the
same alphabet1. We refer to this series of substitutions as the joining of di-
mensions [13]. By an identical series of substitutions in KA(z), which is the
aperiodic autocorrelation of the array A(z), one obtains the aperiodic autocor-
relation, KÃ(y), of the sequence, Ã(y). This is not the only possible substitution
for A(z) and KA(z), as, at the array level, the ordering of variables z0, z1,
. . . etc, is arbitrary. Thus, more generally, one can apply the series of substitu-
tions zπ(0) = y, and zπ(k) = z

Nπ(k−1)

π(k−1) , ∀k, 1 ≤ k < n, where π ∈ Sn is any permu-
tation of {0, 1, . . . , n − 1}. Moreover the ordering of coefficients in one or more
1 We do not consider, in this paper, the alternative substitution strategy using the

Chinese Remainder theorem when the dimensions are relatively prime.
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dimensions, j, may be reversed and/or multiplied by a unit phase, α, |α| = 1,
without changing the aperiodic coefficient magnitudes, and these symmetries
can be expressed by replacing zj by αjz

±1
j for all dimensions to be reversed

and/or phase-shifted. Thus, each array, A(z), can generate a family of sequences
{Ã} = {A(z) | zπ(0) = y, zπ(k) = αkz

±Nπ(k−1)

π(k−1) , |αk| = 1, 1 ≤ k < n, ∀π ∈ Sn},
each with the same aperiodic autocorrelation, KÃ, where the number of distinct
sequences in the family depends on internal symmetries of the specific array.

All sequences in family {Ã} have an aperiodic autocorrelation, given by KÃ,
where the coefficients of KÃ are a relatively straightforward combination of
the coefficients of KA. In particular, if we had an array, A, with perfect (δ-
function) aperiodic autocorrelation, then all sequences in {Ã} would also have
a perfect δ-function response. Although such ideal arrays do not exist, there are
pairs of Golay complementary arrays whose aperiodic autocorrelations sum to
a δ-function and, by joining, one can extract from such array pairs a family of
sequence pairs whose aperiodic autocorrelations sum to a δ-function.

The continuous Fourier power spectrum of A is summarised by (2). Likewise,
the continuous Fourier power spectrum of Ã is summarised by,

F(Ã) = {KÃ(υ0, υ
N0
0 , . . . , υ

N0N1...Nn−2
n−1 ) | |υ0| = 1.}, (3)

By comparing right-hand sides of (2) and (3) one concludes that

F(Ã) ⊆ F(A). (4)

Let P (A) be the maximum value in F(A), i.e.

P (A) = max(u | u ∈ F(A)). (5)

We refer to P (A) as the peak-to-average power ration (PAPR) of A. If, for a
particular array, A, one has an upper bound, P , on P (A), then, from (4), P is
also an upper bound on P (Ã). If A had a perfect aperiodic autocorrelation then
F(Ã) = F(A) = {1}, i.e. the Fourier power spectrum of the sequence obtained
by joining is flat everywhere, implying that P (A) = P (Ã) = 1. Although such
perfect arrays are impossible, we can obtain a near-flat Fourier power spectrum
for Ã and B̃ by constructing a pair of Golay complementary arrays, (A, B), such
that P (A) = ||A||2+||B||2

||A||2 and P (B) = ||A||2+||B||2
||B||2 , leading to P (Ã) ≤ P (A) and

P (B̃) ≤ P (B) for all possible sequences in families {Ã} and {B̃}, respectively.

5 Three Kinds of Aperiodicity for Generalised Boolean
Functions

We now focus our discussion on characterisation and construction of aperiodic
Boolean functions. We here consider an n-variable generalised Boolean function,
A : Fn

2 → C, which is a 2× 2× . . .× 2 n-dimensional array, where the kth entry
in the array, k ∈ Fn

2 , is given by A(k) ∈ C. In other words A ∈ Cn
2 .
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We characterise the aperiodicity of a generalised Boolean function using uni-
tary matrices. Let

VI = { 1√
2

(
1 α
1 −α

)
| ∀α, |α| = 1}

be an infinite-size class of 2× 2 unitary matrices. Then, from (2),

F(A) = FI(A) = {ÂU,k | ÂU = UA, ∀U ∈ V ⊗n
I , ∀k ∈ Fn

2},

where we now refer to F(A) as FI(A) to indicate that all transforms are taken
with respect to unitaries from V ⊗n

I . In other words, the set of points comprising
the continuous Fourier transform of A is equal to the union of the set of array
elements of ÂU , taken over all possible 2n× 2n matrices U in V ⊗n

I , where ÂU is
the unitary transform of A with respect to U . From the previous section we see
that aperiodicity of A can be assessed by examining the ‘flatness’ of FI(A) and,
from (5), one measure of this flatness is P (A), the PAPR of A, which from now
on we refer to as PI(A).

The complete class of 2× 2 unitary matrices can be given by

V = {Δ
(

cos θ sin θα
cos θ − sin θα

)
| ∀α, |α| = 1, ∀θ}, (6)

where Δ is any diagonal or anti-diagonal unitary 2 × 2 matrix. VI is only a
subclass of V . Are there are any other infinite-size unitary matrix subclasses
over which another type of aperiodicity of A could be assessed?

We therefore consider aperiodicity of an n-variable generalised Boolean func-
tion, A, with respect to V ⊗n

I , V ⊗n
II and V ⊗n

III , where

VII = {
(

cos(θ) sin(θ)
sin(θ) − cos(θ)

)
| ∀θ}

and

VIII = {
(

cos(θ) i sin(θ)
sin(θ) −i cos(θ)

)
| ∀θ}, where i =

√
−1.

We refer to these three types of aperiodicity as type-I, type-II, and type-III
aperiodicity, as characterised by the spectral sets FI , FII , and FIII , where

FII(A) = {ÂU,k | ÂU = UA, ∀U ∈ V ⊗n
II , ∀k ∈ Fn

2},

and
FIII(A) = {ÂU,k | ÂU = UA, ∀U ∈ V ⊗n

III , ∀k ∈ Fn
2}.

We define the generalised Boolean function, A, to have optimal type-I, type-II, or
type-III aperiodic properties if PI(A), PII(A), or PIII(A) is as small as possible,
respectively.

The relationship between VI , VII , and VIII is via the multiplicative action on
VI of a cyclic group, T = {I, λ, λ2}, of order 3, where

λ =
ω5

√
2

(
1 i
1 −i

)
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is a generator of T of order 3, ω is a primitive eighth root of one, and I is the
2× 2 identity matrix. Specifically,

VI = ΔVIIIλ = Δ′VIIλ
2 = Δ′′VIλ

3,

where Δ, Δ′, and Δ′′ are diagonal and/or anti-diagonal 2 × 2 unitaries. The
action of λ rotates VI to VII , VII to VIII , and VIII to VI , all modulo the group
of diagonal/anti-diagonal matrices {Δ}. The reason that we choose to rotate by
λ is because we consider T to be important - the local Clifford group, C, for 2×2
unitaries, splits as D × T, where D is a subgroup comprising 64 diagonal and
anti-diagonal 2×2 unitaries, and the local Clifford group, C, is defined to be the
group of 192 matrices that stabilizes the Pauli group, P, otherwise known as the
discrete Heisenberg-Weyl group. For 2 × 2 unitaries, P comprises {I, X, Z, Y },
where

X =
(

0 1
1 0

)
, Z =

(
1 0
0 −1

)
, Y = −iXZ.

The term ‘stabilizes’ means that UWU−1 = W ′, ∀U ∈ C, ∀W, W ′ ∈ P.
We have introduced three types of aperiodicity in spectral (‘frequency’ or

‘residue’) terms by means of the rotation action of T on the infinite-size set of
transforms, VI , over which conventional aperiodicity is defined. We now give the
polynomial equations which reflect the ‘time’ (‘non-residue’) viewpoint for this
aperiodicity. Specifically, given an n-variable generalised Boolean function, A,
and associated multivariate polynomial A(z) = A(z0, z1, . . . , zn−1),

Lemma 1

Type-I aperiodic properties of A are expressed by KI
A(z) = A(z)A∗(z)

||A||2 ,

Type-II aperiodic properties of A are expressed by KII
A (z) = 2nA(z)2

||A||2∏n−1
j=0 (1+z2

j )
,

Type-III aperiodic properties of A are expressed by KIII
A (z) = 2nA(z)A(−z)

||A||2∏n−1
j=0 (1−z2

j )
.

A is a perfect generalised Boolean function of type-I, II, or III if KI
A(z) = 1,

KII
A (z) = 1, or KIII

A (z) = 1, respectively.

Proof. Let υ = (υ0, υ1, . . . , υn−1), and let R and I be the sets of real and
imaginary values, respectively. One can verify that the sets of spectral power
values FI(A), FII(A), and FIII(A) can be obtained via the following evaluations
of certain equations in A(z) over the unit circle, real axis, and imaginary axis,
respectively,

FI(A) = {A(υ)A∗(υ)
||A||2 | |υj | = 1, 0 ≤ j < n},

FII(A) = { 2nA(υ)2

||A||2∏n−1
j=0 (1+υ2

j )
| υj ∈ R, 0 ≤ j < n},

FIII(A) = { 2nA(υ)A(−υ)

||A||2∏n−1
j=0 (1−υ2

j )
| υj ∈ I, 0 ≤ j < n}.

A is a perfect aperiodic generalised Boolean function of type-I, II, or III, if
PI(A) = 1, PII(A) = 1, or PIII(A) = 1, respectively, which occurs when
FI(A) = {1}, FII(A) = {1}, or FIII(A) = {1}, respectively, and this is only
possible when the conditions of the lemma are satisfied. QED.
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We now apply dimension joining to the Boolean array, A, to obtain two new
types of aperiodic sequence action. From the array A(z0, z1, . . . , zn−1), via the
substitution z0 = y, zk = z2

k−1, ∀k, 1 ≤ k < n, one obtains the length 2n

sequence Ã, and applying the same substitutions to the multivariate polynomial
equations of lemma 1 gives the following univariate polynomial equation in Ã(y),

Lemma 2

Type-I aperiodic properties of Ã are expressed by KI
Ã
(y) = Ã(y)Ã∗(y)

||Ã||2 ,

Type-II aperiodic properties of Ã are expressed by KII
Ã

(y)= 2nÃ(y)2

||Ã||2∏n−1
j=0 (1+y2j+1 )

,

Type-III aperiodic properties of Ã are expressed by KIII
Ã

(y)= 2nÃ(y)Ã(−y)

||Ã||2∏n−1
j=0 (1−y2j+1 )

.

Ã is a perfect complex sequence of length 2n of type-I, II, or III if KI
Ã
(y) = 1,

KII
Ã

(y) = 1, or KIII
Ã

(y) = 1, respectively.

Each array generates a family of type-I sequences, which we shall now call {ÃI},
each member of which generates the same aperiodic autocorrelation, which we
shall now call KI

Ã
(y). Likewise, each array, A(z), can also generate a family

of type-II and type-III sequences, {Ã}II , and {Ã}III , respectively, where each
member of {Ã}II = {A(z) | zπ(0) = y, zπ(k) = αkz±2

π(k−1), αk ∈ R, 1 ≤ k <

n, ∀π ∈ Sn}, has the same type-II aperiodic profile, KII
Ã

, and where each member
of {Ã}III = {A(z) | zπ(0) = y, zπ(k) = αkz±2

π(k−1), αk ∈ R, 1 ≤ k < n, ∀π ∈
Sn}, has the same type-III aperiodic profile, KIII

Ã
.

6 Some Cryptographic Interpretations and Context for
Type-I, II, and III Aperiodicity

Let a(x) be a Boolean function in n variables, where Ak = (−1)a(k) ∈ {−1, 1}n,
k ∈ Fn

2 .

6.1 Cryptographic Motivation

Having characterised three types of aperiodicity for a generalised Boolean func-
tion we now provide some cryptographic motivation as to the relevance of these
characterisations for Boolean functions of types I and II.

– The conventional differential properties of a are measured by the closeness of
a(x) to a(x + s), s ∈ Fn

2 , i.e. by the maximum magnitude of σs =∑
x∈F

n
2
(−1)a(x)+a(x+s), ∀s �= 0 [8]. A differentially perfect function will be

maximally distant from its differential, for all values of s �= 0, i.e. ideally
σs = 0, ∀s �= 0, in which case the differential a(x)+a(x+s) remains completely
unbiased ∀s �= 0, on the assumption that x is not known. But type-I aperiod-
icity measures the biasedness of a(x) + a(x + s) on the assumption that xj is
known for each sj = 1, and a perfect type-I aperiodic function would remain
completely unbiased for all s �= 0 even under this assumption [9].
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– The conventional linear properties of a are measured by the closeness of a(x)
to an affine function, t · z, t ∈ Fn

2 , i.e. by the maximum magnitude of ât =∑
x∈F

n
2
(−1)a(x)+t·x, ∀t [8]. A linearly perfect function will be maximally dis-

tant from all affine functions, i.e. â will have magnitude 2n/2, ∀t, in which case
a(x) + t · x is minimally biased ∀t. There is an implicit assumption that each
of the input variables x0, x1, . . . , xn−1 is ‘0’ with probability 1

2 . But type-II
aperiodicity measures the biasedness of a(x) + t · x, ∀t, where no assumption
is made on the input probability of xj = 0, ∀j.

6.2 Wider Context

The autocorrelation action of the Heisenberg-Weyl (HW) group [11] on an n-
variable Boolean function, a, can be described by,

Hs,t(a) =
∑

x∈F
n
2

(−1)a(x)+a(x+s)+x·t+s·t = < A, XsZtA >, s, t ∈ Fn
2 . (7)

There are 4n coefficients, Hs,t(a). The Boolean function, a, (array A), can be
considered to be a good HW function if all magnitudes |Hs,t(a)| are small ∀s
and t �= 0. A perfect HW Boolean function would have Hs,t(a) = 0 for all
∀s and t �= 0, but this is impossible. Let s = (s0, s1, . . . , sn−1) ∈ Fn

2 let s̄ =
(s0 + 1, s1 + 1, . . . , sn−1 + 1).

– [9] Type-I aperiodicity is measured by the coefficients Hs,t(a) where t � s.
A perfect type-I function would have Hs,t(a) = 0, ∀s and t �= 0, t � s.

– Type-II aperiodicity is measured by the coefficients Hs,t(a) where t � s̄. A
perfect type-II function would have Hs,t(a) = 0, ∀s and t �= 0, t � s̄.

– Type-III aperiodicity is measured by the coefficients Hs,t(a) where s � t. A
perfect type-III function would have Hs,t(a) = 0, ∀s and t �= 0, s � t.

Each of type-I, II, III identifies 3n of the 4n HW coefficients. For the 3n type-I
coefficients and the 4n HW coefficents we know the following identities.∑

s,t,t�s |Hs,t(a)|2 =
∫
|υj |=1,∀j

|A(υ)|4, Wiener-Kinchine∑
s,t |Hs,t(a)|2 = 2n, Moyal’s identity [11].

The impossibility of perfect type-I, II, or III functions implies the impossiblity
of a perfect HW function. But, in the next section, we identify perfect pairs of
type-I, II, and III functions which are also constructible, whereas the far stricter
HW criteria does not appear to allow such pairs. However, recent activity [18,16]
has identified N -element sequences and (one) array which realise the value of
|Hs,t(a)|2 = 1

N+1 everywhere, which is the theoretical min-max. Such objects are
called equiangular lines and, in the context of quantum tomography, are known
as SIC-POVMs. Whilst a number of SIC-POVM sequences have been found over
unwieldy alphabets, only one 2 × 2 × 2 SIC-POVM array has been found (the
Hoggar lines), and this is not over the alphabet {1,−1} [16]. Moreover, [16] has
shown that SIC-POVM arrays in Cn

2 do not exist for n > 3.
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When viewing the n-variable Boolean function, a, as a quantum state of
n qubits, as described by pure-state vector |A >= 2−n/2A, then the action
of the HW group on |A > identifies the qubit bit-flip, phase-flip, and com-
bined phase-flip then bit-flip errors on |A > (the action of unitaries X , Z, and
XZ), respectively. Those Boolean functions, a, for which Hs,t(a) = 0 when
wt(s) + wt(t) − wt(s + t) < 2d (‘wt’ means Hamming wieght) represent one-
dimensional quantum codes of distance d [6,4], and include highly-entangled
graph states, which have been proposed as a resource for measurement-based
quantum computing [20]. This quantum condition on the Hs,t(a) coefficients is
conveniently expressed by the fixed-aperiodic autocorrelation of Boolean func-
tions, as proposed and investigated in [9], this comprising the union of coefficients
arising from the aperiodic autocorrelation of a, with those from the aperiodic
autocorrelation of any function, a↓, obtained by fixing one or more of the input
variables of a to ‘0’ or ‘1’ - a total of 5n coefficients. Related to these 5n fixed-
aperiodic autocorrelation coefficients we have the following conjectured identity.∑

s,t

(
n

es,t

)
2es,t |Hs,t(a)|2 =

∫
U∈V ⊗n ||U |A > ||4,

where es,t = n−wt(s+ t+ s · t), and V is the set of all 2×2 unitaries, as defined
in (6).

7 Complementary and Near-Complementary Pairs and
Their Construction

Conventional (type-I) Golay complementary sequence pairs, (Ã, B̃), satisfy the
property,

KI
Ã
(y) + KI

B̃
(y) = 2. (8)

In other words (Ã, B̃) are ideal as a pair of type-I sequences. But, as shown
recently [13], the Golay property is often, primarily, an array property, and a
pair of (type-I) Golay arrays, (A, B), satisfy,

KI
A(z) + KI

B(z) = 2., (9)

where z = (z0, z1, . . . , zn−1), in which case (A, B) are ideal as a pair of type-
I arrays. Let {(Ã, B̃)} be a family of sequence pairs obtained from (A, B) by
joining. It follows from the ideal properties of the array pair that,

PI(A) =
||A||2 + ||B||2

||A||2 , PI(B) =
||A||2 + ||B||2

||B||2 .

In particular, if ||A||2 = ||B||2, which is the case for Boolean arrays A = (−1)a,
B = (−1)b, then

PI(A) = PI(B) = 2.

It follows from (4) that,

PI(Ã) ≤ PI(A), PI(B̃) ≤ PI(B).
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So, if (A, B) is type-I complementary, then so is (Ã, B̃) for all (Ã, B̃) ∈ {(Ã, B̃)}.
Complementary array properties imply complementary sequence properties, but
a complementary pair of sequences is not necessarily derived from a pair of
higher-dimensional arrays. For instance, the length-10 (type-I) complementary
pair of sequences over the alphabet {1,−1} is not derived from a 2 × 5 two-
dimensional (type-I) complementary array pair over the alphabet {1,−1} [23].

We further extend our definition of PAPR to array or sequence pairs. Specif-
ically, let,

KI
AB(z) =

A(z)A∗(z) + B(z)B∗(z)
||A||2 + ||B||2 ,

and
FI(A, B) = {KI

AB(υ) | |υj | = 1, 0 ≤ j < n}.

FI(Ã, B̃) is similarly defined, where

FI(Ã, B̃) ⊆ FI(A, B).

The type-I PAPR of the array pair, (A, B), and sequence pair, (Ã, B̃), are given
by,

PI(A, B) = max(u | u ∈ FI(A, B)),
PI(Ã, B̃) = max(u | u ∈ FI(Ã, B̃),

and
PI(Ã, B̃) ≤ PI(A, B).

The (type-I) Golay construction for sequence pairs [14,15] was generalised by
Turyn [30], further generalised by Borwein and Ferguson [5], and has recently
been generalised to arrays [13]. We here give a further generalisation to near-
complementary pairs [27,29], building on the notation of [5]. Let x = (z0, z1, . . . ,
zn−1), y=(zn, zn+1, . . . , zn+m−1), and z=(z0, z1, . . . , zn+m−1). Let (A(x), B(x)),
(C(y), D(y)), and (F (z), G(z)) be three pairs of polynomials of n, m, and n+m
variables, respectively.

Lemma 3. Let

F (z) = C(y)A(x) + D∗(y)B(x), G(z) = D(y)A(x) − C∗(y)B(x).

Then,
PI(F, G) = PI(A, B)PI(C, D).

In particular, if (A, B) and (C, D) are both (type-I) Golay complementary pairs
then, by definition, PI(A, B) = PI(C, D) = 1 and, therefore, as PI(F, G) = 1,
then (F, G) is a (type-I) Golay complementary pair.

From lemma 3 one can derive a similar construction for sequence pairs. We call
the construction of lemma 3 a type-I construction. If PI(A, B) = 1 + ε and
PI(C, D) = 1+ ε′, then PI(F, G) = 1+ ε′′, where ε′′ is small if ε and ε′ are small,
in which case we have a construction for near-complementary pairs.
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Previously we showed that, for arrays in Cn
2 , one can rotate the concept of

aperiodicity by successive multiplications of the transform kernel by λ. This also
implies a rotated concept of complementarity and we now define type-II and
type-III complementarity for arrays in Cn

2 , i.e. for generalised Boolean functions.
For A, B ∈ Cn

2 ,
Type-II complementary array pairs, (A, B), satisfy the property,

KII
A (z) + KII

B (z) = 2. (10)

Type-III complementary array pairs, (A, B), satisfy the property,

KIII
A (z) + KIII

B (z) = 2. (11)

By means of unitary rotation by λ, as described in section 5, we can not only
rotate the set of transforms over which aperiodicity and complementarity is
determined, but also rotate the (type-I) Turyn construction itself. We obtain
the following type-II and type-III constructions for (near-)complementary pairs,
where the meanings of PII(A, B) and PIII(A, B), . . . etc, follow in exactly the
same way as for type-I.

Lemma 4. Let

F (z) = C(y)A(x) + D(y)B(x), G(z) = D(y)A(x) − C(y)B(x).

Then,
PII(F, G) = PII(A, B)PII (C, D).

In particular, if (A, B) and (C, D) are both type-II complementary pairs then,
by definition, PII(A, B) = PII(C, D) = 1 and, therefore, as PII(F, G) = 1, then
(F, G) is a type-II complementary pair.

Lemma 5. Let

F (z) = C(y)A(x) + D(−y)B(x), G(z) = D(y)A(x) − C(−y)B(x).

Then,
PIII(F, G) = PIII(A, B)PIII (C, D).

In particular, if (A, B) and (C, D) are both type-III complementary pairs then,
by definition, PIII(A, B) = PIII(C, D) = 1 and, therefore, as PIII(F, G) = 1,
then (F, G) is a type-III complementary pair.

The construction of lemma 3 is valid for arrays of all dimensions, and the con-
structions of lemmas 4 and 5 are at least valid for arrays in Cn

2 , i.e. for generalized
Boolean functions. For the special case where the elements of the array are in
the alphabet {1,−1}, we can express the type-I, II, and III constructions using
Boolean functions. Let (a, b), (c, d), and (f, g) be three pairs of Boolean functions
of n, m, and n + m disjoint sets of variables, respectively, where a, b : Fn

2 → F2,
c, d : Fm

2 → F2, and f, g : Fn+m
2 → F2. By PI(a, b) we mean PI(A, B). Let

←−a (x0, x1, . . . , xn−1) = a(x0 + 1, x1 + 1, . . . , xn−1 + 1).
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Lemma 6. Let

f = (a + b)(c +
←−
d ) + a +

←−
d , g = (a + b)(←−c + d) + b +←−c .

Then,
PI(f, g) = PI(a, b)PI(c, d).

Lemma 7. Let

f = (a + b)(c + d) + a + d, g = (a + b)(c + d) + b + c.

Then,
PII(f, g) = PII(a, b)PII(c, d).

Lemma 8. Let (c, d) be defined over the m binary variables, (x0, x1, . . . , xm−1).
Let lm =

∑m−1
j=0 xj . Let

f = (a + b + lm)(c + d) + a + d, g = (a + b + lm)(c + d) + b + c + lm.

Then,
PIII(f, g) = PIII(a, b)PIII(c, d).

It is interesting to note that the type-II Boolean construction is identical to a
certain construction for bent functions [2,8,7], which states that, if a, b, c, and d
are bent, then f is bent. Moreover, if a and b are t resilient, and c and d are u
resilient, then f is t + u + 1 resilient. Finally, if a, b, c, and d are self-dual bent,
then f is self-dual bent, and if a and b are bent duals, c is self-dual bent, and d
is anti-self-dual bent, then f is self-dual bent [3].

8 Explicit Examples of Type-I, II, and III Complementary
Pairs of Boolean Functions

For type-I there is, to within symmetries discussed previously, only one known
[10] class of complementary pairs of Boolean functions, (f, g), as given by,

f =
n−2∑
j=0

xjxj+1, g = f + x0, or g = f + xn−1.

By interpreting the quadratic terms of f as edges of a simple graph we see that
f represents the path graph of n vertices.

For type-II we have found, to within symmetries discussed previously, only
one class of complementary pairs of Boolean functions, (f, g), as given by,

f =
∑
j<k

xjxk, g = f +
∑

j

xj .

f represents the complete graph of n vertices.
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Some type-III pairs were identified by Abdelraheem in [1], as follows. For type-
III there is an infinite number of classes of complementary pairs of quadratic or
affine Boolean functions, (f, g). To begin with, (f, g) are type-III complementary
for any affine f and g. By passing these into the input of the type-III construc-
tion of lemma 5, an infinite number of classes of type-III complementary pairs
of quadratic Boolean functions arise at the output. However, one particularly
interesting class is

f =
n−1∑
j=1

x0xj , g = f +
n−1∑
j=1

xj or g = f + x0.

For this particular class, f represents the star graph of n vertices.
Although we have focused on Boolean complementary pairs we observe that

type-I, II, and III pairs from the alphabet {1,−1} can be rotated round to
type-II, III, and I pairs from the alphabet {0, 1, i,−1,−i}, respectively, by the
multiplicative action of λ on each of the pairs, and round to type-III, I, and II
pairs from the alphabet {0, 1, i,−1,−i}, respectively, by the multiplicative action
of λ2. In particular, this allows us to generate new Golay (type-I) complementary
pairs which are defined, indirectly, using type-II or type-III Boolean functions.

9 Conclusion and Open Problems

The purpose of this paper was, first, to show how aperiodic arrays can be used
to generate aperiodic sequences and, secondly, to present a wider notion of ape-
riodicity for arrays in Cn

2 . Three different notions of aperiodicity were defined by
exploiting the action of a size-3 cyclic subgroup of the local Clifford group on the
aperiodic description. The three types of aperiodicity related to the autocorre-
lations generated by the Heisenberg-Weyl group. The three aperiodic types also
lead to three types of construction for complementary pairs of arrays. Explicit
examples of complementary pairs of Boolean functions were given for each of the
three types.

We identify some open problems.

– Does another class of complementary {1,−1} sequences exist of length 2n

other than the ‘path graph’ class described in this paper? One can generalise
this question to ask whether (type-I) complementary Boolean functions other
than the path graph class exist.

– We only know of one class of type-II complementary Boolean function pair,
namely that described by the ‘complete graph’. As with type-I, it is an
open problem as to whether another class of type-II complementary Boolean
function pair exists.

– We know of no complementary pair of Boolean functions of types I, II or III
whose component functions have degree greater than 2. Can one prove that
higher-degree complementary pairs of Boolean functions do not exist?



Close Encounters with Boolean Functions of Three Different Kinds 151

– The complementary Boolean functions described in this paper are of alge-
braic degree ≤ 2. But, for cryptographic purposes, it is usually desirable
to construct high-degree Boolean functions. Assuming that complementary
pairs of Boolean functions of degree greater than 2 do not exist, how close
to complementarity can one get for a pair of Boolean functions of degree d,
and how does one construct and/or bound such a pair?

– Is it possible to effectively combine two or more of the type-I, II, or III
constructions? Observe that the type-I and type-II constructions differ only
in the application of ←−∗ to c and d for type-I. Thus, if we can find a pair of
Boolean functions (c, d) that satisfy the conditions c = ←−c and d =

←−
d , then

we can apply type-I and type-II constructions simultaneously. Unfortunately
we do not know of a pair (c, d) which is simultaneously both type-I and type-
II complementary (and we do not expect that such a pair exists), but it is
possible to find near-complementary pairs that satisfy the conditions.

– It is reasonable to expect that there are no pairs of Boolean functions which
are complementary with respect to the Heisenberg-Weyl group. Can this be
proved? If we can’t find pairs, then what is the smallest size set of Boolean
functions which are complementary with respect to the Heisenberg-Weyl
group for a non-trivial number of variables, n? Note that it is possible to
extract complementary sets from quantum codes, however the size of these
sets grows exponentially with the number of binary variables, so they are of
little interest.

– Are there any other interesting types of aperiodicity? For instance, the three
types of aperiodicity describes herein are for arrays in Cn

2 . One expects that
more interesting types may turn up as the size of array dimension increases.
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Abstract. A new type of attack on secure network coding is introduced
in this paper. In this model, network nodes, which handle the traffic from
the source node to sink nodes are potentially viewed to be corruptible.
We study the maximum security capacity for this problem for a single-
source single-sink scenario, and we generalize our study for multicast
with network coding. Based on our study, two optimization problems
are introduced to increase the security against the attacks under study.
We have shown by simulation results that our proposed optimization
method has increased the security against node corruption considerably,
and at the same time, the cost per level of security is lower compared to
optimization methods without constraints on node corruption.

1 Introduction

Network coding was introduced by Ahlswede et al. in [1]. With network coding,
network nodes are allowed not only to forward exact copies of packets, as routers
in a classical store-and-forward network are restricted to, but also to modify and
combine incoming packets prior to forwarding them. In [10], Li et al. proved that
linear network coding suffices to multicast information from a single source to a
fixed set of receivers at a rate equal to the minimum (over all receivers) of the
min-cut of the network flow from the source to each receiver.

In [4], Cai and Yeung presented a method for secure multicasting that can be
alleviated by network coding. They introduced a model for secure linear network
coding that achieves perfect information security against a wiretapper who can
eavesdrop on a limited number of network links. Their method is based on using
secret sharing ideas combined with constraints on the field size for secure network
coding. In [5], Feldman et al. proposed a method based on the model by Cai and
Yeung. In a work by Hassanzadeh et al. [6], the ideas in [4] are extended, and a
two layer secret sharing approach is proposed for secure network coding. In these
three models, the attacker has access to links. In [8], Lima et al. considered a
different approach to provide secure network coding. In their model, any node is
a potential eavesdropper. Hence, imposing a limit on the input degree of nodes,
prevents nodes from extracting the message. Additionally, they showed that the
security of the model depends fully on the network topology.

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 154–162, 2008.
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In our approach, we have extended the idea from [8] and we have defined a
different class of attacking. In our model, the attacker is not limited to a single
node. The objective of the attacker is to corrupt as many nodes as possible such
that the aggregate flow to all corrupted nodes provides the required information
to extract the secret message. In this paper, we analyze these types of attacks
and we propose two algorithms for increasing the security against them.

The paper is organized as follows: Section 2 contains an introduction to net-
work coding and to secret sharing. Wiretapping based on node corruption is
described in Section 3, which also contains two optimization methods for in-
creasing the security against the newly defined attacks. Simulation results are
presented in Section 4, and conclusions are drawn in Section 5.

2 Preliminaries

2.1 The Network Coding Model

We represent a communication network with a directed graph G = (V, E), where
V is the set of nodes (routers, a single source, and sinks/receivers) and E is
the set of edges or links. Each link (i, j) represents a lossless point-to-point
communication link from node i to node j. The sets ΓI(i) and ΓO(i) contain
links entering and leaving node i, respectively.

The goal of a multicast session is to convey a sequence of information symbols
generated at a set of sources (S ⊂ V ) to a set T ⊂ V of nodes (referred to
as the set of sinks). Unless otherwise stated, we assume that S consists of a
single source1. The maximum amount of transferable directed flow between a
source and a sink in a directed graph is known as the max-flow, which, by the
well-known max-flow theorem is identical to the min-cut between the source
and the sink. In a multicast, where a source node sends information to all sink
nodes; it is possible to reach max-flow for each sink by applying network coding
[1]. Without network coding, this is not always possible. In network coding,
intermediate nodes not only copy and forward their received packets but can
also combine them. Establishing a predetermined network code consists of two
steps: 1) Finding a subgraph for transferring the max-flow of information, and
2) Given this subgraph, finding a specific method of encoding; that is, a detailed
procedure for how each node shall combine its received packets at its outgoing
links. In [7], a deterministic method is proposed for encoding and in [3], this
algorithm is extended for subgraphs with cycles (flow cycles).

2.2 Secret Sharing

In cryptography, secret sharing refers to any method for distributing a secret
(with a dealer) amongst a group of n participants (players), each of which is

1 The single-source scenario can easily be generalized to one with multiple sources.
For simplicity and convenience, we mainly consider the single-source scenario in this
paper.
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allocated a share of the secret. In an (n, tss)-threshold secret sharing scheme,
the secret can only be reconstructed if at least tss shares are combined together.
Secret sharing was invented independently in 1979 by A. Shamir [11] and G.
Blakley [2]. The goal of secret sharing is to divide a secret m into n shares
m1, . . . , mn in such a way that:

1. Knowledge of any tss or more shares makes m easily computable.
2. Knowledge of any tss−1 or fewer shares leaves m completely undetermined.

Consider the trivial (n, n)-threshold scheme, i. e. tss is equal to n. In this scheme,
n−1 random numbers (r1, . . . , rn−1) are generated as n−1 shares, and for the last
share we have: rn = m⊕r1⊕r2 · · ·⊕rn−1, where⊕ is any discrete formal addition.
It is straightforward to see that S could be reconstructed with knowledge of all the
shares, while no subset of n− 1 or fewer shares can reconstruct the secret m.

3 Wiretapping Based on Node Corruption

3.1 Definition and Analysis

Assume the network G is available for communication. A source node s ∈ S
wants to send a secret message m to a sink or terminal node t ∈ T in a way that
is secure against eavesdropping. The message m may of course be encrypted, but
this may require a key distribution scheme which can be inconvenient; thus we
will assume that an attacker who is able to read the whole message is also able
to understand its meaning. We will further assume that all the edges are secure
from eavesdropping, for example because link encryption is applied to all links.
However, an attacker may attempt to take control over intermediate nodes in
order to learn the content of m. We will also assume that the source and the
sink cannot be corrupted. Our basic problem can be formulated as:

How many nodes must the attacker corrupt to learn m? (1)

Clearly, if the message is sent along a single path, the simple answer to this ques-
tion is that it is sufficient to corrupt any single node along the path. In order to
improve this, the secret message m can be represented by an (n, n) secret sharing
scheme. Thus, instead of sending m we will send n message parts m1, . . . , mn, in
such a way that anyone who can collect all n parts will be able to reconstruct the
original secret message m, while knowledge to n−1 parts will give no information
at all about m. Such a secret sharing scheme can easily be designed for any n. The
n parts are then sent independently along node-disjoint paths from the source and
the sink. Then our basic problem can be reformulated as:

What is the maximum number of node disjoint paths from s to t in G? (2)

In a set of node disjoint paths, every node (except from the source and sink
nodes) has exactly one incoming and one outgoing link. Based on the node
disjoint property, our problem in (2) can be formulated as a max-flow problem
with the following constraints:
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1. All links have unit capacity.
2. All the nodes except sink nodes can only receive a single unit of flow.

Conditions on the single-source single-sink case imply the fact that controling
the amount of flow entering each node is the key to achieve the maximum secure
capacity. We have generalized the problem in (2) for more than one sink node. As
it has been mentioned in Section 2.1, it is possible to reach max-flow capacity by
applying network coding. In the next sections, two algorithms are proposed for
providing secure network coding against node corruption attacks. In our setup,
we consider that a smart move by the attacker is to concentrate his efforts on
the neighbors of s and t. Hence, we try to secure the neighbors and assume that
the neighbors of s and t are incorruptible.

3.2 Optimization

In a multicast scenario, the same collection of information is sent to all sink
nodes. Each sink receives different information flows over disjoint paths. The
union of all the disjoint paths forms a subgraph that carries the traffic from
the source node to all sink nodes. By routing, the problem is to find disjoint
Steiner trees [12], which is known to be NP-hard; and the resulting solutions are
comparatively wasteful with respect to network resources. For even a moderate
number of sink nodes, it may be impossible to allocate such trees. The new obvi-
ous alternative approach is to use network coding. By applying network coding,
not only the required paths can be provided but also optimization methods are
available to find the lowest cost subgraph. Based on the work by Lun et al. [9],
we investigate a linear program (LP) to minimize the cost and to provide our
objectives. The goal here is to search a subgraph that includes the required flow
for each sink with minimum cost. A fixed cost and unit capacity is considered
for each link.

As we have mentioned in the previous section, control over the amount of
flow entering each node is the key to achieve the maximum secure capacity. In
other words, for each node the Node Input Flow (NIF ) should be minimized.
Before presenting a linear formulation for NIF , we define some notation. For
each link (i, j) ∈ E, we define the constants aij and cij as cost and capacity,
respectively, and the variable zij as flow. Further, x

(t)
ij is the variable representing

the amount of flow destined to sink t passing through link (i, j). After solving
the LP problem to be given shortly, it is possible to see which links are used in
the subgraph by looking at the value of the zij variables, and it is also possible
to see which links are used for a specific sink by checking x

(t)
ij for all links.

Now we can define NIF :

NIF = max
j∈V \(T∪S)

{
∑

(i,j)∈ΓI (j)

zij} (3)

The less the NIF is, the more nodes need to be corrupted to gather required
flow for extracting the secret message. In the context of single-source single-sink,
the value of NIF is one, which is its lowest possible value. Our objective is to
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setup an optimization problem that minimizes the NIF and also provides the
cheapest possible subgraph. Two approaches are proposed in this paper: Two
Step Optimization (TOPT) and Joint Cost and Security Optimization (JOPT).
The following sections introduce these approaches.

TOPT. The TOPT problem is a two step network coding optimization, which
is based on the work in [9]. Each step is an LP problem. In the first step, the
minimum value of NIF is computed. In (4), the first step is shown.

minimize NIF

subject to:zij � cij ∀(i, j) ∈ E

0 � x
(t)
ij � zij ∀(i, j) ∈ E ∀t ∈ T∑

(i,j)∈ΓO(i)

x
(t)
ij −

∑
(j,i)∈ΓI (i)

x
(t)
ji = σ

(t)
i ∀i ∈ V ∀t ∈ T

∑
(i,j)∈ΓI (j)

zij � NIF ∀j ∈ V \ (T ∪ S).

(4)

In the second step, the computed value of NIF is used to find a low cost sub-
graph. The second step is shown in (5). In the second step, NIF represents a
constant value.

minimize
∑

(i,j)∈E

aijzij

subject to:zij � cij ∀(i, j) ∈ E

0 � x
(t)
ij � zij ∀(i, j) ∈ E ∀t ∈ T∑

(i,j)∈ΓO(i)

x
(t)
ij −

∑
(j,i)∈ΓI (i)

x
(t)
ji = σ

(t)
i ∀i ∈ V ∀t ∈ T

∑
(i,j)∈ΓI (j)

zij � NIF ∀j ∈ V \ (T ∪ S).

(5)

In (5) and (4) we have:

σ
(t)
i =

⎧⎪⎨
⎪⎩

R, if i = s

−R, if i = t

0, otherwise.
(6)

where
R = min

t∈T
{max-flow(t)}, (7)

and max-flow(t) is the maximum flow from s to t in G with link capacities cij .
In other words, the first optimization problem (4) maximizes the security,

whereas the problem in (5) searches for a low-cost subgraph.
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JOPT. Here, two steps of TOPT are formulated in one LP problem. Therefore
the objective function consists of two parts; security and cost. The cost is the
same as the second step in TOPT, but security is slightly different from the first
step of TOPT. The LP problem for JOPT is shown in (8). The NIF variable is
multiplied by a constant coefficient Er. The reason for this coefficient is twofold.
First, since NIF is comparably smaller than the cost objective, and without
the constant coefficient the result of the optimization thus has less emphasis
on the security. Second, we have to choose the constant coefficient equal to
|V | − |T | − |S| (the number of intermediate nodes) to transfer the effect of NIF
to all the intermediate nodes. The formulation of JOPT becomes:

minimize
∑

(i,j)∈E

aijzij + Er ·NIF

subject to:zij � cij ∀(i, j) ∈ E

0 � x
(t)
ij � zij ∀(i, j) ∈ E ∀t ∈ T∑

(i,j)∈ΓO(i)

x
(t)
ij −

∑
(j,i)∈ΓI (i)

x
(t)
ji = σ

(t)
i ∀i ∈ V ∀t ∈ T

∑
(i,j)∈ΓI (j)

zij � NIF ∀j ∈ V \ (T ∪ S).

(8)

In this setup, cost and security are optimized together. In Section 4, the difference
between the results of TOPT and JOPT is compared.

4 Simulation Results

In this section, the performance of TOPT and JOPT are shown, and they are
compared with the ordinary optimization (OOPT). The OOPT is the LP prob-
lem defined in [9]. Since OOPT has no restrictions on the value of NIF , the
optimal subgraph of OOPT has the maximum value of NIF .

4.1 The Level of Security

The level of security, denoted by Φ, depends on NIF . If R is the rate for secure
communication, then R/NIF is the minimum number of nodes that are needed
to access the complete R rate flow. The larger NIF is, the fewer intermediate
nodes are needed to be corrupted for a successful attack. Based on the properties
of R/NIF we define Φ in the following form:

Φ = 1− NIF

R
. (9)

In Fig. 1, simulation results for Φ are shown for all three approaches. In our
approaches (TOPT and JOPT), we achieve a considerable improvement of the
level of security. It is also observable that TOPT and JOPT almost provide the
same level of security. Since in TOPT, NIF has its minimum value, TOPT has
a slightly better level of security.
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Fig. 1. The level of security

4.2 The Cost Per Level of Security

Since there is always a trade-off between level of security and the total cost
(P), we provide a new metric Ω defined as the cost per level of security. Cost is
defined in the following form:

P =
∑

(i,j)∈E

aijzij . (10)

We define Ω in (11) below, and simulation results are shown in Figs. 2 and 3. Fig.
2 shows Ω according to the number of nodes for the fixed number of sinks, and
Fig. 3 shows Ω according to the number of sinks for the fixed number of nodes.

Ω =
P

Φ · 100
. (11)

Based on Figs. 2 and 3, we observe that in our approaches, more security is
gained with lower cost. By comparing the cost in our simulations we find that
the cost in TOPT and JOPT is slightly different from OOPT, but since TOPT
and JOPT have constraints on NIF , the resulting subgraph is not concentrated
to a small subgraph. Further, the subgraph is spread to more places in the
network and more nodes are handling the max-flow rate. To access the complete
flow from the source, the attacker hence needs to corrupt more nodes.
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5 Conclusion

In this paper, we have introduced an attack model for secure network coding
based on node corruption. We have studied the maximum security capacity for
this problem, and two optimization problems are introduced to increase the
security against the attacks under study. We have defined two metrics, namely
the level of security and the cost per level of security. Our simulations showed
considerable improvement in these metrics.
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1 Introduction

Let Fq be a finite field of the order q. Let wt(v) denote the Hamming weight
of a vector v ∈ Fn

q and let d(v,u) = wt(v − u) denote the Hamming distance
between two vectors v,u ∈ Fn

q . We say that two vectors v and u are neighbors
if d(v,u) = 1. A q-ary linear [n, k, d]q-code C is a k-dimensional subspace of
Fn

q , where n is the length, N = qk is the cardinality of C and d is the minimum
distance,

d = min{d(v,u) : v,u ∈ C, v �= u}.
For the binary case, i.e. for the case q = 2, we use notation [n, k, d]. The error
correcting capability of a code C with minimum distance d is given by e =

�d− 1
2

� and we will refer to C as a e-code.

Given any vector v ∈ Fn
q , its distance to the code C is d(v, C) =

minx∈C{d(v,x)} and the covering radius of the code C is

ρ = max
v∈Fn

q

{d(v, C)}.

Let D = C + x be a coset of C, where + means the component-wise ad-
dition in Fq. The weight wt(D) of D is the minimum weight of the code-
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by μ(D) = (μ0(D), μ1(D), ..., μn(D)) its weight distribution, where μj(D),
j = 0, . . . , n denotes the number of words of D of weight j. Notice that μj(D) = 0
for all j < s or j > ρ.

Definition 1. A q-ary linear code C with covering radius ρ is called completely
regular if the weight distribution of any coset D of C of weight i, i = 0, 1, ..., ρ
is uniquely defined by the minimum weight of D, i.e. by the number i = wt(D).

Solé in [10] used the direct sum of � copies of a fixed perfect binary 1-code of
length n for the construction of infinite families of binary completely regular
codes of length n·� with covering radius ρ = �. Thus, in the construction of [10],
the covering radius of the resulting code is growing to infinity, if the length of
the code is growing.

The main purpose of the present paper is to describe a method of construction
of linear completely regular and completely transitive codes (see Definition 3 in
Section 2) with arbitrary covering radius, which is constant when the length of
the resulting code is growing to infinity. More exactly, for any prime power q and
for any natural number � we give an explicit construction of an infinite family
of linear q-ary completely regular and completely transitive codes with lengths
n = (qm − 1)(q
− 1)/(q− 1)2 and with fixed covering radius ρ = �, where m ≥ �
is any integer.

2 Preliminary Results

For a given q-ary code C with covering radius ρ = ρ(C) define

C(i) = {x ∈ Fn
q : d(x, C) = i}, i = 0, 1, . . . , ρ.

We also use the following alternative standard definition of completely regularity
(see, for example, [7]).

Definition 2. A code C is completely regular, if for all l ≥ 0 every vector
x ∈ C(l) has the same number cl of neighbors in C(l− 1) and the same number
bl of neighbors in C(l + 1). Also, define al = (q − 1)·n − bl − cl and note that
c0 = bρ = 0. Refer to (b0, . . . , bρ−1; c1, . . . , cρ) as the intersection array of C.

For a q-ary [n, k, d]q code C with weight distribution μ(C) = (μ0, . . . , μn) define
the outer distance s = s(C) as the number of nonzero coordinates μ⊥

i , i =
1, . . . , n of the vector (μ⊥

0 , . . . , μ⊥
n ) obtained by the MacWilliams transform of

μ(C) [4]. Hence, since C is a linear code, s(C) is the number of different nonzero
weights of codewords in the dual code C⊥.

Lemma 1 ([4]). For any code C with covering radius ρ(C) and with outer
distance s(C) we have ρ(C) ≤ s(C). If C is completely regular then ρ(C) = s(C).

Let C be a linear code of length n over Fq, a finite field of size a prime power
q. Following [6], if q = 2, the automorphism group Aut(C) of C is a subgroup
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of the symmetric group Sn consisting of all n! permutations of the n coordinate
positions which send C into itself.

Let M be a monomial matrix, i.e. a matrix with exactly one nonzero entry in
each row and column. If q is prime, then Aut(C) consists of all n× n monomial
matrices M over Fq such that cM ∈ C for all c ∈ C. If q is a power of a prime
number, then Aut(C) also contains all the field automorphisms of Fq which
preserve C.

The group Aut(C) induces an action on the set of cosets of C in the following
way: for all σ ∈ Aut(C) and for every vector v ∈ Fn

q we have (v+C)σ = vσ +C.
In [10] it was introduced the concept of completely transitive binary linear

code and it can be generalized to the following definition, which also corresponds
to the definition of coset-completely transitive code in [5].

Definition 3. Let C be a linear code over Fq with covering radius ρ. Then C is
completely transitive if Aut(C) has ρ + 1 orbits when acts on the cosets of C.

Since two cosets in the same orbit should have the same weight distribution, it
is clear that any completely transitive code is completely regular.

3 Kronecker Product Construction

In this section we describe a new construction which provides for any natural
number ρ and for any prime power q an infinite family of q-ary linear completely
regular codes with covering radius ρ.

Definition 4. For two matrices A = [ar,s] and B = [bi,j ] over Fq define a new
matrix H which is the Kronecker product H = A ⊗ B, where H is obtained by
changing any element ar,s in A by the matrix ar,sB.

Consider the matrix H = A ⊗ B and let C, CA and CB be the codes over Fq

which have, respectively, H , A and B as a parity check matrices. Assume that
A and B have size ma × na and mb × nb, respectively. For r ∈ {1, · · · , ma} and
s ∈ {1, · · · , mb} the rows in H look as

(ar,1bs,1, · · · , ar,1bs,nb
, ar,2bs,1, · · · , ar,2bs,nb

, · · · , ar,nabs,1, · · · , ar,nabs,nb
).

Arrange these rows taking blocks of nb coordinates as columns such that the
vectors c in code C are presented as matrices of size nb × na:

c =

⎡
⎢⎢⎢⎣

c1,1 . . . c1,na

c2,1 . . . c2,na

...
...

...
cnb,1 . . . cnb,na

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

c1

c2

...
cnb

⎤
⎥⎥⎥⎦ , (1)

where ci,j = ar,jbs,i and cr denotes the r-th row vector of this matrix.
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We will call matrix representation the above way to present the vectors c ∈ C.
Let us go to a further view on the codewords of C, the code over Fq which

has H = A ⊗ B as a parity check matrix. Consider vector c ∈ C by using the
representation in (1), hence c = (ct

1, c
t
2, · · · , ct

nb
). By definition of C we have

B
(
Act

1, Act
2, . . . , Act

nb

)t = 0

(here (·)t means the transpose vector) and so i

B
(
Act
)t = B·c·At = 0. (2)

With this last property it is easy to note that any (nb × na)-matrix with code-
words of CA as rows belong to the code C and also any (nb × na)-matrix with
codewords of CB as columns belongs to the code C. Vice versa, all the codewords
in C can always be seen as linear combinations of matrices of both types above.

Moreover, it is straightforward to state the following well known fact.

Lemma 2. The codes defined by the parity check matrices A ⊗ B and B ⊗ A
are permutation equivalent.

From now on, we assume that matrix A (respectively, B) is a parity check matrix
of a Hamming code with parameters [na, ka, 3]q (respectively, [nb, kb, 3]q), where
na = (qma − 1)/(q − 1) ≥ 3 (respectively, nb = (qmb − 1)/(q − 1) ≥ 3) and
ka = na −ma (respectively, kb = nb −mb).

Denote by Hm the parity check matrix of a perfect Hamming [n, k, 3]q-code
C over Fq, where n = (qm − 1)/(q − 1). Let {ξ0 = 0, ξ1 = 1, . . . , ξq−1} denote
the elements of Fq. Then the matrix Hm can be expressed, up to equivalence,
through the matrix Hm−1 as follows [11]:

Hm =
[

0 · · · 0 1 · · · 1 · · · ξq−1 · · · ξq−1 1
Hm−1 Hm−1 · · · Hm−1 0

]
,

where 0 is the zero column and where H1 = [1]. Note that, under such construc-
tion, the following lemmas are straightforward (see, for example, [11]).

Lemma 3. Matrix Hm contains as columns, among other, all the m possible
binary vectors of length m and of weight 1.

Lemma 4. For i = 1, . . . , m, let ri denote the i-th row of Hm. Let g =∑m
i=1 ξiri, with ξi ∈ Fq, be any linear combination of the rows of Hm. If

wt(g) �= 0, then wt(g) = qm−1.

Any codeword c ∈ C, which has nonzero elements only in one row (or only in
one column) will be called a line. Since A and B are parity check matrices of
Hamming codes (i.e. they have minimum distances 3), there are lines of weight
3. For example, a row line Lr = (α1, α2, α3)(s1,s2,s3) (respectively, a column line
Ls = (α1, α2, α3)(r1,r2,r3)) means that the codeword c of weight 3, whose nonzero
rth row (respectively, nonzero sth column) has nonzero elements α1, α2, α3 in
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columns s1th, s2th, s3th (respectively, in rows r1th, r2th, r3th). Recall that this
means the following equality for the corresponding columns as1 , as2 , and as3 of
matrix A (respectively, for the columns br1 , br2 , and br3 of matrix B):

3∑
i=1

αi asi = 0 (respectively,
3∑

i=1

αj brj = 0).

Define the set R of row indices as R = {1, . . . , nb} (respectively, of column indices
as S = {1, . . . , na}). By definition of perfect codes, for a fixed row index r ∈ R
(respectively, column index s ∈ S), for any two nonzero elements α1, α2 ∈ Fq and
for any two different s1, s2 ∈ S (respectively, r1, r2 ∈ R) there is a unique row line
Lr = (α1, α2, α3)(s1,s2,s3) (respectively, column line Ls = (α1, α2, α3)(r1,r2,r3))
for some nonzero element α3 ∈ Fq and for some s3 ∈ S (respectively, r3 ∈ R).

It is well known that the linear span of the vectors of weight three in a
Hamming code gives all the code. Hence, the linear span of the row lines of
weight three and the column lines of weight three gives all the codewords of C.

Given a vector v ∈ Fnb·na
q let v = [vij ] be its matrix representation. Sup-

pose that after doing the elementary operations described above we obtain a
new vector in the same coset v + C such that its matrix representation has no
more than one nonzero row and no more than one nonzero column. Now let
Mr (respectively, Mc) be the set of all the vectors vi,jbi for i ∈ {1, . . . , nb}
(respectively, vi,jaj for j ∈ {1, . . . , na}), where bi (respectively, aj) are the cor-
responding column vectors in B (respectively, A). The size of Mr and Mc is the
same but it is not necessarily the distance from v to code C. However, we can
compute d(v, C) as min(rank(Mr), rank(Mc)). The following proposition will
show this.

Proposition 1. Let v ∈ Fnb·na
q be a vector such that the matrix representation

has, at the most, one nonzero coordinate in each row and each column. Let Mr

and Mc be the matrices defined above and s = min(rank(Mr), rank(Mc)). Then
the distance of v to code C is d(v, C) = s.

Proof. Let the length of Mr and Mc be greater than s. This means that doing
simplification using column or row lines we can obtain a new vector belonging to
v + C and with, at the most, s nonzero positions. This shows that d(v, C) ≤ s.

Hence, we are going to prove that s ≤ d(v, C). The proof will be by con-
tradiction. Assume s > d(v, C) and consider the vector c ∈ C with the same
coordinates as v and, moreover the new coordinates (strictly less than s) that
we need to add to v to obtain a vector c in C.

We can suppose that c = [cij ] has only one nonzero coordinate in each row,
otherwise if there are more than one nonzero coordinate we pass a line through
two points and simplify. We follow in this way till we reach a vector in C with
only one nonzero coordinate in each row. We will call ci,ji the value of the nonzero
position in ith row and vector c will be c = [ci,ji ], where there are at the most
2s nonzero values. From (2) we know that vectors in c ∈ C fulfill BcAt = 0 and
so, all the row vectors in Mr are orthogonal to all the row vectors in Mc, where
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Mr =
(
c1,j1aj1 c2,j2aj2 . . . cnb,jnb

ajnb

)
and

Mc =
(
b1 b2 . . . bnb

)
.

Erase the zero columns in the above matrices and realize that the length of
matrices Mr and Mc coincides with the number of nonzero positions in c, so it is
strictly lower than 2s. Hence, the rank in one of the two matrices is necessarily
less than s which contradicts to our initial assumption. ��

Lemma 5. Let C be the code over Fq which has H = A ⊗ B as a parity check
matrix, where A and B are parity check matrices of Hamming codes [na, ka, 3]q
and [nb, kb, 3]q, respectively, where na = (qma − 1)/(q − 1) ≥ 3; nb = (qmb −
1)/(q − 1) ≥ 3. Let J1 and J2 be two sets of columns of B (respectively, of
A) of the same cardinality less or equal to mb (respectively, ma). Then there
exists a monomial matrix φ from Aut(B) (respectively, from Aut(A)) which acts
as a permutation of coordinate positions (up to a scalar factor) that moves the
columns from J1 into the columns from J2.

Proof. It is enough to prove this only for the matrix B. Let Ti, i = 1, 2 be the
(mb×mb)-matrix formed by the mb columns from Ji where each column is up to a
scalar factor. It is straightforward to find an invertible mb×mb matrix K over Fq

such that K T1 = T2. Since B is the parity check matrix of a Hamming code, the
matrix KB is again a parity check matrix for a Hamming code and KB = Bφ
for some monomial matrix φ. Moreover, if GB is the corresponding generator
matrix for this Hamming code, i.e. BGt

B = 0, then (Bφ)Gt
B = (KB)Gt

B = 0
and so φ ∈ Aut(B). Furthermore, φ acts as a permutation of coordinate
places (up to a scalar factor) that moves the vectors from J1 into the vectors
from J2. ��

The following theorem shows that the code constructed by the Kronecker product
is a completely transitive code and, therefore, is a completely regular code.

Theorem 1. Let C be the code over Fq which has H = A⊗B as a parity check
matrix, where A and B are parity check matrices of Hamming codes [na, ka, 3]q
and [nb, kb, 3]q, respectively, where na = (qma − 1)/(q − 1) ≥ 3; nb = (qmb −
1)/(q − 1) ≥ 3; ka = na −ma and kb = nb −mb. Then:

(i) The code C has length n = na·nb, dimension k = n−ma·mb and minimum
distance d = 3.
(ii) The covering radius of C is ρ = min{ma, mb}.
(iii) C is a completely transitive code and, therefore, a completely regular code.

Proof. It is straightforward to check that the code C has length n = na·nb,
dimension k = n−ma·mb and minimum distance d = 3.

Assume that mb < ma. In respect of the covering radius, take a vector v ∈
Fnb·na

q with only one nonzero coordinate in each one of the mb rows indexed by
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independent column vectors of B and of the mb columns indexed by independent
column vectors of A. From Proposition 1 this previous vector v is at distance
mb from code C, so ρ ≥ mb.

Vice versa, given any vector v ∈ Fnb·na
q we can simplify the rows and columns

in its matrix representation to obtain a new vector in the same coset v+C with
at most mb nonzero coordinates and so d(v, C) ≤ mb.

For the case ma ≤ mb we reach the analog result by considering the Kronecker
product B ⊗A which gives a permutation equivalent code (see Lemma 2). This
proves (ii).

To prove that C is a completely transitive code it is enough to show that
starting from two vectors x,y ∈ C(�), there exists a monomial matrix φ ∈
Aut(C) such that xφ ∈ y + C.

Vectors x and y can be written as x = x1 + cx and y = y1 + cy , respectively,
where cx, cy ∈ C and both vectors x1,y1 have weight �.

Write the vectors x1 and y1 as (nb×na)-matrices and note that the � nonzero
columns (respectively, rows) in both vectors x1 and y1 correspond to � linearly
independent columns of the matrix A (respectively, of the matrix B), otherwise
the weight of x (respectively, of y) would be strictly less than �.

Let φ1 be any monomial (na×na)-matrix and φ2 be any monomial (nb×nb)-
matrix. It is clear that

(Aφ1)⊗ (Bφ2) = (A⊗B)(φ1 ⊗ φ2)

and φ1 ⊗ φ2 is a monomial (nanb × nanb)-matrix.
Now, using Lemma 5 we can find φ ∈ Aut(A) and φ′ ∈ Aut(B) such that

φ⊗ φ′ is a monomial map in Aut(A⊗B) and x1(φ⊗ φ′) = y1.
But, Aut(A⊗B) = Aut

(
(A⊗B)⊥

)
= Aut(C) and x(φ⊗φ′) = (x1 + cx)(φ⊗

φ′) = y1 + cx(φ⊗ φ′) ∈ y + C. ��
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Abstract. We consider codes that offer unequal error protection to dif-
ferent information symbols, as measured by the so-called separation vec-
tor (a generalisation of the minimum Hamming distance).

We determine the parameters of all optimal linear quaternary codes
of length at most eleven.

1 Introduction

In certain applications of coded transmission or storage, some codeword digits
or information digits are more relevant than others. One such application is the
transmission of numerical data, where errors in the sign or high order digits can
be more significant than errors in the low order digits. 1 Another application is
the protection of digits originating from hierarchical source coding: if only part of
these digits is correctly recovered, a reasonable signal quality can be obtained.
Unequal error protection (UEP) codes offer different degrees of protection to
different codeword digits or information digits.

Coding for unequal error protection has received little attention in the coding
textbooks, a notable exception being the book of Morelos-Zaragoza [2]. The
present paper gives a short introduction to UEP coding, and provides some new
results on optimal linear quaternary UEP codes of small length, similar to the
results from [3] in the binary case. We restrict ourselves to block codes and take
as performance indicator the so-called separation vector [4], a generalization of
the minimum (Hamming) distance of a code. The separation vector yields an
indication of the information digit error rates after bounded-distance decoding
on a q-ary symmetric channel with small cross-over probability. In [5], procedures
are described for finding encodings and decodings for a given linear code that
simultaneously minimize the error rates for all the message symbols for more
general channels. Other techniques for obtaining unequal error protection codes
include UEP convolutional codes [6], UEP with the aid of coded modulation
[7][8], and UEP with (irregular) LDPC codes [9].

Throughout the paper, we denote with Fq the finite field with q elements.
As usual, a q-ary [n, k] code is a k-dimensional code of length n over Fq, that
is, a k-dimensional subspace of Fn

q . If q = 4, we speak about quaternary codes

1 A very simple form of unequal error protection recently has been agreed upon for
the transmission of an integer number in the uplink control channel in the upcoming
3G-PP cellular communication standard [1].

A. Barbero (Ed.): ICMCTA, LNCS 5228, pp. 171–185, 2008.
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(instead of 4-ary codes). The weight of a vector x is its number of non-zero
entries. The m ×m identity matrix is denoted by Im. Finally, we call a vector
s = (s1, s2, . . . , sk) ∈ Nk non-increasing if for i = 1, 2, . . . , k − 1, we have that
si ≥ si+1; if s and t are integer-valued vectors of equal length k, then s ≥ t
means that si ≥ ti for all i = 1, 2, . . . , k.

The paper is organized as follows. In Section 2, we provide a short review of
UEP codes based on the concept of separation vector. In Section 3, we recall
some bounds on the size of UEP codes from literature. In Section 4, we give
constructions of linear UEP codes, both for general fields and specifically for
F4. In the final section, we obtain the parameters of all optimal quaternary
linear UEP codes of length at most eleven. The appendix contains proofs of the
non-existence of quaternary UEP codes for some specific parameters.

2 Unequal Error Protection Codes and the Separation
Vector

UEP codes were introduced by Masnick and Wolf [10]. Since then, there have
been quite some investigations of codes with unequal error protection of infor-
mation digits, or of codeword digits. Early work includes [11], [12], [4], [13], [14],
and [15]. The references in [14] indicate a considerable interest in UEP coding in
the Soviet Union in the 1970s – unfortunately, most of these references appeared
in Russian only.

In this paper, UEP properties will be measured by the separation vector,
introduced by Dunning and Robbins [4].

Let C be a code of length n over a q-ary alphabet Q with qk words, and let
E : Qk → C be an encoding function. For 1 ≤ i ≤ k, si(E) is the minimum
Hamming distance between the images of two strings in Qk with different i-th
symbol, so

si(E) = min{d(E(m), E(m′)) | m ∈ Qk,m′ ∈ Qk, mi �= m′
i}.

The vector s(E) = (s1(E), s2(E), . . . , sk(E)) is called the separation vector of E.
Note that for each encoding function E, the smallest entry of s(E) equals the
minimum Hamming distance of C.

If Q = Fq, and C is a linear code, any generator matrix G of C induces a
linear encoding that maps m to mG. By abuse of notation, we write s(G) for
the separation vector of the encoding function induced by G. As the Hamming
distance between two vectors equals the weight of their difference, we have that

si(G) = min{wt(mG) | mi �= 0}.

As is well known, if a code with minimum Hamming distance d is employed,
then the transmitted codeword can be retrieved whenever the number of errors
t and the number of erasures e satisfy

2t + e ≤ d− 1.
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Similarly, if E is employed for encoding, then the i-th information symbol can be
retrieved whenever the number of errors t and the number of erasures e satisfy

2t + e ≤ si(E)− 1, (1)

see [4, Thm. 2]. A code that has an encoder E such that not all entries of s(E)
are equal is called an Unequal Error Protection (UEP) code. If the code under
consideration is linear, we speak about a linear UEP code, or LUEP code.

Dunning and Robbins [4] prove the following beautiful fundamental result.

Theorem 1. Let C be an [n, k] code over Fq. There exists a k × n generator
matrix G∗ of C such that s(G∗) is non-increasing, and for every encoder E of
C for which s(E) is non-increasing, we have that s(G∗) ≥ s(E).

The matrix G∗ is called an optimal generator matrix for C, and s(G∗) is
called the separation vector of C.

Theorem 1 is proved in [4] by showing that the following greedy construction
yields an optimal generator matrix G∗. Choose as k-th row of G∗ a non-zero
codeword of minimum weight. For 1 ≤ i ≤ k − 1, choose as the i-th row of
G∗ a codeword of minimum weight that is not in the linear span of the rows
i+1, . . . , k of G∗. The optimal generator matrix G∗ obtained in this manner is a
minimum weight optimal generator matrix, and for i = 1, 2, . . . , k, the i-th row
of G∗ has weight si(G∗).

Remark. Through Inequality 1, the separation vector yields an indication of
the message digit error rates after bounded distance decoding (and ML decod-
ing) for a q-ary symmetric channel with small cross-over probability. In [5], Dun-
ning generalizes Theorem 1 to more general channels by describing procedures
for finding encodings and decodings of linear block codes that simultaneously
minimize the error rates for all the message symbols, given that the occur-
rence probability of error vectors is known and independent of the transmitted
codeword.

Remark. For non-linear codes, an encoding with a component-wise maximum
separation vector need not exist, see [4, Example 2].

The following definitions [3] capture the notion of optimality of LUEP codes.

Definition 1. For each s ∈ Nk, we define2

nq(s)=min{n | there is an [n, k] code over Fq with separation vector at least s},

nex
q (s)=min{n | there is an [n, k] code over Fq with separation vector exactly s}.

2 Note that the definitions make sense: for any vector s ∈ Nk, there is a code of
dimension k with separation vector exactly equal to s, namely the code of length∑k

i=1 si for which the j-th row of the generator matrix has ones in the positions

indexed by the elements of {∑j−1
i=1 si + t | 1 ≤ t ≤ sj}, and zeroes elsewhere.
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A q-ary [nq(s), k, s] code is called length-optimal.
A q-ary [nq(s), k, s] code is called optimal if an [nq(s), k, t] code with t≥s, t�=s
does not exist.

It is clear that nq(s) ≤ nq(t) whenever s ≤ t, but this is not true for the nex
q -

function, see [3].
Much of the research on UEP codes focussed on the binary case. In [3], Van

Gils constructed nearly all optimal binary LUEP codes of length at most 15;
he completed the few remaining cases in [16]. In [17], the results of a computer
search for binary cyclic UEP codes of length up to 65 are reported, while [18]
describes a class of binary primitive BCH codes.

In [19], a description is provided of a class of q-ary codes, q = 2s, where
the separation vector has entries 3 and 5. It is shown that the codes have the
smallest possible redundancy among all systematically encoded UEP codes of
equal length and separation vector. The construction generalizes a construction
for the binary case from [14] and, interestingly enough, is based on a description
with parity check matrices. One of the few other papers dealing with non-binary
UEP codes is [20], that will shortly be discussed in Section 4.

The present paper focusses on quaternary codes where relatively little is
known. We use the knowledge on the minimum distance of small linear qua-
ternary codes, see [21] and the references therein.

3 Bounds on the Length of LUEP Codes

In this section, we present lower bounds on the functions nq(s) and nex
q (s). We

start with a generalization of the Griesmer bound for linear equal error protection
codes, that was proved by Katsman for the binary case [13] and by Van Gils for
the general case [3].

Theorem 2. Let s = (s1, s2, . . . , sk) ∈ Nk be non-increasing, then

nq(s) ≥ s1 + nq(	s2/q
, . . . , 	sk/q
).

By repeatedly applying this inequality, we find that

nq(s) ≥
k∑

i=1

	 si

qi−1

.

As each term in the sum in Theorem 2 is at least one, Theorem 2 has the
following corollary.

Corollary 1. For any non-increasing vector s = (s1, . . . , sk) ∈ Nk, we have that
nq(s) ≥ s1 + k − 1.

Corollary 1 can be considered as a generalization of the Singleton bound. It
implies that each component of the separation vector of an [n, k] MDS code
equals n− k + 1. As [n, k] MDS codes over Fq exist whenever n ≤ q + 1 [22, Ch.
11], optimal LUEP codes over Fq of length smaller than q + 2 do not exist.
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The Singleton bound holds for all codes, linear or not. As a contrast, the follow-
ing example from [23] shows that Corollary 1 does not hold for non-linear codes.

Example. Let C0 consist of 512 binary vectors of length 15 and weight at most
three (note that there are 576 of such vectors), and let C1 consist of 512 binary vec-
tors of length 15 and weight at least 12, and let C = C0∪C1. Let E be an encoding
of 10-bits information strings to C such that for all m = (m1, . . . , m10) ∈ F10

2 , we
have that E(m) ∈ Cm1 . As any two words c0 ∈ C0 and c1 ∈ C1 differ in at least
nine positions, s1(E) ≥ 9, and obviously si(E) ≥ 1 for i = 2, . . . , 10. According
to Corollary 1, the length of a linear 10-dimensional code with a separation vector
larger than or equal to (9,1,. . . ,1) is at least 9 + 10− 1 = 18.

Theorem 3. Let s = (s1, . . . , sk) ∈ Nk be non-increasing. We have that
nq(s) ≥ 1 + nq(s1, . . . , sk−1).

Proof. See [3, Thm. 8]. ��

Lemma 1. Let G be a k × n matrix with non-increasing separation vector s =
(s1, . . . , sk). Let v be such that sv−1 > sv, and assume that G has a column with
zeroes in all rows v, v + 1, . . . , k. By deleting this column from G, we obtain a k×
(n− 1) matrix G′ with separation vector at least (s1 − 1, . . . , sv−1− 1, sv, . . . , sk).

Proof. Let 1 ≤ i ≤ k, and let m ∈ Fk
q be such that mi �= 0.

It is clear that wt(mG′) ≥ wt(mG)− 1 ≥ si − 1.
Now, suppose that 1 ≤ i ≤ v − 1. If m1 = . . . = mv−1 = 0, then wt(mG′) =

wt(mG) ≥ si. Otherwise, wt(mG′) ≥ wt(mG)− 1 ≥ sv−1 − 1 ≥ si. ��

Theorem 4. Let s = (s1, . . . , sk) ∈ Nk be non-increasing. Let v be such that
sv−1 > sv and

∑k
i=v si ≤ nex

q (s)− 1.
We have that nex

q (s) ≥ 1 + nq(s1 − 1, . . . , sv−1 − 1, sv, . . . , sk).

Proof. This theorem is in fact Theorem 11 from [3]. We give a short proof here.
Let G be a minimum weight k × n matrix with separation vector s (so the i-th
row of G has weight si). The rows v, v+1, . . . , k of G jointly contain

∑k
i=v si non-

zeroes, which, according to the premisses, is less than nex
q (s), so surely less than

n. Hence, G has a column that contains only zeroes in the rows v, v + 1, . . . , k,
and we can apply Lemma 1. ��

We end this subsection by remarking that Bross and Litsyn recently presented
an improved asymptotic upper bound on the size of binary LUEP codes with
two protection levels, that is, for codes for which the entries of the separation
vector attain two distinct values [24].

4 Constructions of LUEP Codes

In this section, we describe the constructions that will be used to generate all
quaternary LUEP codes of length eleven or less. We start with constructions
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for general alphabets, and subsequently give specialized constructions for the
quaternary case.

4.1 Constructions for General Fields

Throughout this section, we denote the non-zero elements of Fq by α1, . . . , αq−1.
Our first construction yields all optimal two-dimensional LUEP codes.

Construction A. Let s1 ≥ s2. We define u := s1− s2 + 	s2/q
, v := 	s2/q
 and
t := q + s2 − q	s2/q
.

The 2× (s1 + 	s2/q
) matrix

⎡
⎣ u︷ ︸︸ ︷

1 · · · 1
(v−1)times︷ ︸︸ ︷

0α1 · · ·αq−1 · · · 0α1 · · ·αq−1 0α1 · · ·αt−1

0 · · · 0 1 1 · · · 1 · · · · · · 1 1 · · · 1 1 1 · · · 1

⎤
⎦

has separation vector (s1, s2).

Corollary 2. Let s1 ≥ s2 and let C be an optimal [n, 2, (s1, s2)] code over Fq.
Then q divides s2, and n = s1 + s2/q.

Proof. Combination of Construction A and Theorem 2. ��

Construction B
Let q = 2r, let m ≥ 2, and let 1 ≤ im ≤ · · · ≤ i1 ≤ q − 1.

Define G :=

⎡
⎢⎢⎢⎢⎢⎣

001 · · ·1 001 · · ·1 · · · 001 · · ·1
Gi1 O · · · O
O Gi2 · · · O
...

...
. . .

...
O O · · · Gim

⎤
⎥⎥⎥⎥⎥⎦ .

Here, O denotes an all-zero matrix of appropriate size, and Gs denotes the

2×(s + 2) matrix
[

10α1 · · ·αs

01α2
1 · · ·α2

s

]
.

The matrix G generates a [
∑m

j=1(ij + 2), 2m + 1] code over Fq; moreover,
s1(G) =

∑m
j=1 ij , and s2j(G) = s2j+1(G) = 1 + ij , 1 ≤ j ≤ m.

Proof. For 1 ≤ j ≤ m, let Vj = {t +
∑j−1

v=1(iv + 2) | 1 ≤ t ≤ 2 + ij}. It is

easy to check that the matrix
[

001 . . .1
Gs

]
generates an [s + 2, 3, s] code (as q is

even, α2
i �= α2

j if i �= j). From this it follows that for j = 1, 2, . . . , m, the sum of
the top row of G and any linear combination of the bottom 2m rows of G has
weight at least ij in the positions from Vj ; this implies the bound on s1(G). As
the matrix Gs generates a code with minimum distance s+1, the word mG has
weight at least ij + 1 in the positions from Vj whenever m1 = 0 and m2j �= 0 or
m2j+1 �= 0. ��

Corollary 3. Let q be a power of two. For each m ≥ 2 there exists an optimal
q-ary [m(q + 1), 2m + 1, (m(q − 1), q, . . . , q)] code.
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Proof. In Construction B, take i1 = · · · = im = q − 1. The optimality follows
from Theorem 2. ��

The following simple constructions [25] are very useful. Let G be a k×n matrix
for which s(G) = (s1(G), . . . , sk(G)) is non-increasing.

Construction C

If sk(G) ≥2, then the matrix G′=

⎡
⎢⎢⎢⎣

0

G
...
0

10 · · · 0 1

⎤
⎥⎥⎥⎦ has separation vector

(s1(G), . . . , sk(G), 2).
If sk(G) = 2 and the code generated by G is optimal, then the code generated

by G′ is optimal as well.

Proof. For any vector c of length n, we obviously have that wt((c0)+(10. . . 01))
≥ wt(c). This proves the expression for s(G′).

It follows from Theorem 3 that if G generates a length-optimal code, then
G′ generates a length-optimal code as well. Now suppose that sk(G) = 2. Let
t′ = (t1, . . . , tk+1) = (t, tk+1) ∈ Nk+1 be non-increasing and suppose that t′ ≥
s(G′) and t′ �= s(G′). As sk(G′) = sk+1(G′), there is an i ∈ {1, . . . , k} such that
ti > si(G′), and so t ≥ s(G) and t �= s(G). If G generates an optimal code, we
have that nq(t > nq(s(G) = n. Theorem 3 implies that nq(t′) ≥ 1 + nq(t) >
n + 1 ≥ nq(s(G′)). ��

Construction D
Suppose that for each i ∈ {1, . . . , k}, the i-th row of G has weight si(G). Let
ej be the column vector of length k which has a 1 in position j and zeroes
elsewhere. The matrix [G | ej ] has separation vector s(G) + eT

j . This separation
vector need not be nonincreasing.

Construction E
If we delete a column from G, we obtain a matrix G′ which satisfies
si(G′) ≥ si(G)− 1, i = 1, . . . , k.

4.2 Construction of Quaternary LUEP Codes

Throughout this section, the elements of F4 are denoted by 0,1,α and β, where
β = α2 = 1 + α.

Construction F
Let k and n be such that n ≥ max(2k, k + 3).

The k × n matrix G =

⎡
⎢⎢⎢⎣

1 · · · 1 0 · · · 0 1 · · · 1 αβ
0 · · · 0 11

Ik−1 Ik−1

...
...
...

0 · · · 0 11

⎤
⎥⎥⎥⎦

generates an optimal [n, k, (n− k + 1, 4, . . . , 4)] code.
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Proof. Let m = (1, m2, . . . , mk) ∈ Fk
4 , and let c = mG.

For 1 ≤ j ≤ k−1, we have that cj + cj+k−1 = 1, so c has weight at least k−1
in its 2k − 2 leftmost positions.

If equality holds, c has only zeroes and ones in its leftmost 2k − 2 positions,
which implies that c ends in (α, β) or (β, α). As c has only ones in the positions
2k − 1, . . . , n− 2, we conclude that wt(c)≥ (k − 1) + (n− 2k) + 2 = n− k + 1.
So we assume that c has weight at least k in its leftmost 2k−2 positions. As the
rightmost two entries of c add to 1, at least one of them is non-zero. As c has
ones in the positions 2k − 1, . . . , n − 2, we conclude that c has weight at least
k + (n− 2k) + 1 = n− k + 1.

So indeed, s1(G) = n− k + 1. It is obvious that si(G) = 4 for 2 ≤ i ≤ k. The
optimality follows from Theorem 2. ��

Construction G
Let G0 be a generator matrix for a quaternary [6,3,4] code for which the bottom
row has weight six (the existence of such a word follows from the explicit formulas
for the weight enumerator of an MDS code, see [22, Ch. 11, Sec. 3]). Let 2 ≤ d ≤
4, and let G1 generate a quaternary [d + 1, 2, d] code. Let G be the 3 × (7 + d)
matrix defined as

G =

⎛
⎝ G1

G0

0 . . . 0

⎞
⎠ .

Then G generates an optimal quaternary [(7 + d, 3, (d + 4, d + 4, 6)] code.

Proof. Let m be a non-zero vector in F3
4, and let c = mG.

If m1 �= 0 or m2 �= 0, then c has weight at least 4 in its six leftmost positions,
and weight at least d in its d + 1 rightmost positions, so wt(c) ≥ 4 + d.

If m1 = m2 = 0, then c is a non-zero multiple of the bottom row of G, and
so c has weight six.

The length-optimality of the codes follows from Theorem 2. For d = 2, op-
timality follows from Theorem 2. For d = 3, optimality follows from the non-
existence of a quaternary [10,3,7] code [28]. To prove the optimality for the case
d = 4, we apply Theorem 4 and find that nex

4 (8, 8, 7) ≥ 1 + n4(7, 7, 7) = 11. ��

Remark. Construction G is a special case of Construction X [22, Ch. 18, Sec.
7] for adding tails to words from nested codes. Özbudak and Stichtenoth applied
the same method to construct LUEP codes from codes derived from algebraic
curves [20]. Construction X has been applied in [27] in conjunction with LUEP
codes as well; however, in [27], the tails are words from LUEP codes, and the
aim is to construct codes with a large minimum distance.

5 The Parameters of All Optimal Quaternary LUEP
Codes of Length at Most Eleven

We use the bounds and constructions from the previous sections to construct
a table of the parameters of all optimal quaternary LUEP codes of length at
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most eleven. The results for codes of length at most nine appeared before in
[26]. The letters in the table indicate the construction used to find a code with
the given separation vector. With d4(n, k), we denote the maximal minimum
distance of any quaternary [n, k] code; the values were obtained from [21]. In
order to improve readability, we omitted the commas in the separation vec-
tor; components of a separation vector consisting of two digits are preceded
by a dot.

Theorem 5. All codes in Table 1 are optimal, and there are no optimal quater-
nary LUEP codes of length at most eleven with other separation vectors.

Table 1. The separation vectors of all optimal quaternary LUEP codes of length at
most 11

n k d4(n, k)

6 2 4 54A

4 2 3332C

7 2 5 64A

3 4 544F

4 3 4442C , 4333E

5 2 33322C

8 2 6 74A

3 5 644F

4 4 5444F

5 3 44422C , 43333B

6 2 333222C

9 2 7 84A

3 6 744F

4 5 6444F

5 4 54442C , 54433B

6 3 444222C , 433332C

7 2 3332222C

10 2 8 94A

3 6 776G, 844D

4 6 7444D

5 5 64444B

6 4 544422C , 544332C

7 3 4442222C , 4333322C

8 2 33322222C

11 2 8 10.4A, 98A

3 7 886G, 944D

4 7 8444D

5 6 74444B

6 5 644442C , 633333E(F )

7 4 5444222C , 5443322C

8 3 44422222C , 43333222C

9 2 333222222C
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Proof. As remarked after Corollary 1, no optimal [n, k] LUEP codes exist if there
is an [n, k, n− k+1] code. Hence, our table contains no entries for n ≤ 5, k = n,
k = n− 1, k = 1, and [n, k] = [6, 3].

The optimality of the two-dimensional codes and the codes obtained from
Construction F has already been proved. The optimality of the [n, n− 2] codes
can be shown using Theorem 3 and the non-existence of a [6, 4, 3] code. The op-
timality of the codes with a separation vector ending in at least two 2’s obtained
with Construction C has already been demonstrated. In the remaining cases, as
far as not covered explicitly below, we used Theorem 3.

By Theorem 2, we have that n4(4, 3, 3, 3) ≥ 7. By Theorem 4, we have
that nex

4 (4, 4, 4, 3) ≥ 1 + n4(3, 3, 3, 3) = 8; in the same way it can be shown
that nex

4 (4, 4, 3, 3) ≥ 8. In other words, neither a [7,4,(4,4,4,3)] code, nor a
[7,4,(4,4,3,3)] code over F4 exists. Combination of these observations shows the
optimality of the [7,4] codes.

By Theorem 3, we have that n4(4, 4, 3, 3, 1) ≥ 1 + n4(4, 4, 3, 3) = 9, which
shows the optimality of the [8,5] codes.

By Theorem 2, we have that n4(5, 5, 1, 1, 1) ≥ 10. Hence, to show the optimal-
ity of the [9,5] codes it is sufficient to show that neither a [9,5,(5,4,4,4,4)] code,
nor a [9,5,(5,4,4,4,3)] code exists. This has been shown in [26]; for completeness, a
modified proof is contained the appendix. The optimality of the [9,6,(4,3,3,3,3,2)]
code is shown by verifying that a [9,6,(4,3,3,3,3,3)] code does not exist; again,
this verification has been performed in [26], and for completeness is contained
in the appendix.

By Theorem 2, we have that n4(5, 4, 4, 3, 3, 3) ≥ 10. We thus can apply The-
orem 4 and find that nex

4 (5, 4, 4, 3, 3, 3) ≥ 1 + n4(4, 3, 3, 3, 3, 3) > 10. In the
appendix, we prove the non-existence of quaternary [10, 6, (5, 4, 3, 3, 3, 3)] and
[10, 6, (5, 3, 3, 3, 3, 3)] codes.

Combination of Construction E and the non-existence of a [10, 6, (5, 3, 3, 3, 3, 3)]
code shows the non-existence of an [11, 6, (6, 4, 4, 4, 4, 4)] code. Combination of
Theorem 4 and the non-existence of a [10, 6, (5, 3, 3, 3, 3, 3)] code shows the non-
existence of an [11, 6, s] code with s equal to (6, 4, 4, 4, 4, 3), (6, 4, 4, 4, 3, 3) or
(6, 4, 4, 3, 3, 3). The non-existence of an [11, 6, (6, 4, 3, 3, 3, 3)] code is shown in the
appendix. ��
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Appendix: Non-existence Proofs

In this appendix, we describe the verifications for the non-existence of certain
codes. For the codes of length at most nine, these verifications are a modified
version of the proofs in [26]. The verifications for the codes of length ten and
eleven are new.

The general pattern of the verifications is as follows. It is shown that if an
[n, k] code with separation vector s exists, then there exists a k×n matrix with
separation vector s that has a specific form. By a complete search (either by
hand, or by computer), it is shown that no matrix with this specific form has
separation vector s.

For space reasons, we do not give the details of the verifications from [26], but
merely explain to which reduced class of matrices we restricted our search. The
first non-existence proof is quite extensive; the other proofs are more sketchy, as
many of the proof elements from the first case are repeated.

Theorem 6. A [9, 5, (5, 4, 4, 4, 4)] code does not exist.

Proof. By contradiction. Suppose a [9,5, s=(5,4,4,4,4)] code does exist.

Let G =

⎛
⎜⎜⎜⎜⎝

1 0000
∗
∗ I4 P
∗
∗

⎞
⎟⎟⎟⎟⎠ be an optimal, canonical generator matrix ([14]). As

s1 = 5, the top row of P has weight four. By multiplying the columns of P with
appropriate non-zero constants, we obtain that we can assume that the top row
of P consists of four ones. After a column permutation, we obtain a matrix G′

with separation vector s of the form

G′ =
(

11111 0000
Q I4

)
.

If a row of Q contains the field element x more than once, then the sum of
x(111110000) and the corresponding row of G′ has weight at most four. As
s1(G′) = 5, it follows that x = 0. In other words, each row of G′ contains each
non-zero element of F4 at most once. As si(G′) = 4 for i ≥ 2, each row of Q
has weight at least three. We conclude that each row of Q has weight three, and
contains each non-zero element of F4 exactly once.

We can also assume without loss of generality that the leftmost non-zero entry
of each row of Q is a 1: if not, we multiply that row with an appropriate non-zero
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constant (this does not change the separation vector), and multiply the last four
columns of G with appropriate non-zero constants to keep the identity matrix.
For each row of Q, there are thus

(
5
3

)
× 2 = 20 choices (the factor two comes

from the fact that the second and third non-zero entry of each row are either
(α, β) or (β, α)). By an appropriate column permutation, we obtain that we can
assume that Q has top row 1αβ00.

Finally, any two rows of Q are linearly independent, as si(G′) ≥ 3 for i ≥ 2.
As a consequence, it is sufficient to test

(
19
3

)
matrices Q; none of these choices

yields a separation vector (5, 4, 4, 4, 4).
We remark that by further reasoning, the number of matrices Q to be tested

can be reduced so that checking the non-existence by hand is feasible [26]. ��

Theorem 7. A [9, 5, (5, 4, 4, 4, 3)] code does not exist.

Proof. Suppose a code [9, 5, s = (5, 4, 4, 4, 3)] code does exist.

Let G be a minimum weight generator matrix. We can assume without loss of
generality that G(5, 9) = 1. By adding a scalar multiple of the bottom row of
G to other rows, we do not change the separation vector. Hence, there exists a
generator matrix G′ with separation vector s for which the rightmost column
has a one in the bottom row, and zeroes elsewhere. We can replace the rows 2,3,
and 4 of G′ by three rows that generate the same space as these rows, without
changing the separation vector (as s2 = s3 = s4). Hence, we can assume without
loss of generality that the 3×3 matrix consisting of rows 2,3,4 and columns 6,7,8
of G′ equals the identity matrix. As adding scalar multiples of rows 2,3,4 of G′

does not change the separation vector, we can assume without loss of generality
that G′ has the form

G′ =

⎛
⎝ x 000 0

Q I3 0
y z 1

⎞
⎠ ,

where the vector yz has weight two.
Like in the proof of Theorem 6, it can be shown that we can assume without

loss of generality that x=11111, Q has top row 1αβ00, and that each row of Q
has 1 as leftmost non-zero entry and contains each non-zero field element exactly
once. There are thus 2×

(
5
2

)
= 20 candidates for each row of Q (one of which has

already been used as top row); there are thus
(
19
2

)
choices for the two remaining

rows of G′. For the bottom row, there are
(
8
2

)
× 9 = 72 choices. Of the

(
19
2

)
× 72

choices, none yields a separation vector equal to (5, 4, 4, 4, 4, 3).
In [26], a further reasoning is presented that allows to prove Theorem 7

by hand. ��

Theorem 8. A [9, 6, (4, 3, 3, 3, 3, 3)] code does not exist.

Proof. Suppose a [9, 6, s = (4, 3, 3, 3, 3, 3)] code does exist.

Like in the proof of Theorem 6, it can be shown that there then exists a generator
matrix G with separation vector s of the form
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(
1111 00000
Q I5

)
.

Note that each row of Q has weight at least two, and contains each of the
elements 1,α, β at most once. Also, we can assume that the leftmost non-zero
entry of each row of Q is a 1. This implies there are 20 candidate rows for Q: 8 of
weight three, and 12 of weight two. Also, the rows of Q are linearly independent.
None of the

(
20
5

)
choices for Q yields a separation vector s.

In [26], a further reasoning is presented that allows to complete the proof by
hand. ��

Theorem 9. A [10, 6, (5, 3, 3, 3, 3, 3)] code does not exist.

Proof. Suppose a [10, 6, s = (5, 3, 3, 3, 3, 3)] code C does exist.

Like in the proof of Theorem 6, we can assume without loss of generality that
C has a generator matrix G of the form

G =
(

11111 00000
Q I5

)
.

Clearly, each row of Q has weight at least two. Moreover, as s1 = 5, each row of
Q contains each non-zero element at most once. We consider two cases.

(a) Each row of Q has weight two. As the non-zero entries of a row are distinct,
and we can assume the leftmost non-zero entry equals 1, there are

(
5
2

)
× 2 = 20

choices for any row of Q. As the rows of Q must be distinct, we have to investigate(
20
5

)
matrices Q.

(b) Q has a row of weight three. We can assume without loss of generality that
Q has top row 1αβ00. As every row of Q of weight three contains each of the
elements 1,α and β once, and we can assume the leftmost non-zero entry equals
1, there are 2×

(
5
3

)
= 20 candidate rows of weight three; one of them has been

used already. Like above, there are 20 candidate rows of weight two. We thus
have to investigate

(
39
4

)
matrices Q.

In both cases (a) and (b), none of the choices for Q yields a matrix with sepa-
ration vector (5,3,3,3,3,3). ��

Theorem 10. A [10, 6, (5, 4, 3, 3, 3, 3)] code does not exist.

Proof. Suppose a [10,6,(5,4,3,3,3,3)] code C does exist.

Let G be a minimum weight optimal generator matrix for C (see [4]). The 4×10
matrix X that consists of the bottom four rows of G does not have an all-zero
column, as otherwise, according to Lemma 1, there would exist an [9, 6, s] code
with s≥ (4, 3, 3, 3, 3, 3), contradicting Theorem 8. As each row of X has weight
three, X contains twelve non-zeroes. Hence, X contains at most two columns of
weight exceeding one, and so each row of X has at least 3-2=1 non-zero entry that
is the unique non-zero entry in that column of X . We thus can assume without
loss of generality that the four rightmost columns of X form the identity matrix.



Quaternary Unequal Error Protection Codes 185

We can add linear combinations of the four bottom rows of G to the top row
and second row without changing the separation vector. Hence, we can assume
that G is of the form

G =
(

A 0
B I4

)
,

where each row of B has weight two. The second row of G has a non-zero entry;
we assume without loss of generality that G(2, 6) = 1. We can add a linear
multiple of the second row of G to the top row without changing the separation
vector; hence, we assume without loss of generality that G has the following form

G =

⎛
⎝ x 0 0000

y 1 0000
Q zT I4

⎞
⎠ .

As s1(G) = 5, x has weight five; without loss of generality, we take it to be the
all-one vector. Like in the proof of Theorem 6, we can assume that y=(1αβ000).
We can thus assume that G has the following form:

G =

⎛
⎝ 111110 0000

1αβ001 0000
R I4

⎞
⎠ .

Every row of R has weight two and can be assumed to have a 1 as leftmost
non-zero entry. If a row of R ends in a zero, then its two non-zero entries are
different; this thus yields 2 ×

(
5
2

)
= 20 candidate rows. There are 3×

(
5
1

)
= 15

choices for rows of R with a non-zero in position 7. Hence, there are 35 candidate
rows, and we need to investigate

(
35
4

)
candidate matrices R. None of them yields

a separation vector (5, 4, 3, 3, 3, 3). ��
Theorem 11. An [11, 6, (6, 4, 3, 3, 3, 3)] code does not exist.

Proof. Suppose a [11, 6, (6, 4, 3, 3, 3, 3)] code does exist.

Let G be an optimal minimum weight generator matrix. There is no column of
G that has only zeroes in its four bottom positions (as otherwise, according to
Lemma 1, there would exist an [10,6,s] code with s≥ (5, 3, 3, 3, 3, 3)). As the four
bottom rows of G together contain twelve non-zero entries, G has one column
that has two non-zeros in its bottom four rows, and ten columns that have one
non-zero in its four bottom rows. Hence, like in the proof of Theorem 10, we can
assume without loss of generality that G is of the form

G =

⎛
⎝ 1111110 00000

1αβ0001 0000
Q I4

⎞
⎠ ,

where each row of Q has weight two.
A row of Q that ends in a zero has distinct entries; this yields 2 ×

(
6
2

)
= 30

possible candidates. There are 3 ×
(
6
1

)
= 18 candidate rows for Q that have

weight two and end in a non-zero element. All in all, we need to investigate
(
48
4

)
matrices Q, and none of them yields a separation vector (6, 4, 3, 3, 3, 3). ��
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Abstract. This paper presents an overview of coding methods and cryp-
tographic techniques for inductively coupled channels. The paper dis-
cusses the requirements for coding on such channels, review modulation
codes in use in practical systems, and propose new modulation cod-
ing techniques. Error correcting codes and the ways in which it may
aid the communication on these channels are also covered. Cryptogra-
phy is another crucial ingredient for a complete communication system.
Inductively coupled channels pose special challenges for building a se-
cure system. We give a brief overview of these challenges, and of some
cryptographic building blocks and protocols that have been proposed to
meet them.
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1 Introduction

There is a need to design and deploy electronic devices that can operate without
relying on a battery for providing electrical power. For example, once futuris-
tic visions of pervasive or ubiquitous computing may materialize before long.
Such visions comprise an ambience dense with tiny sensors that can measure
physical parameters, and operational devices that we may command to perform
certain tasks. Exchanging or maintaining the batteries for these devices could be
a very complex task. Examples of such applications are networks containing pas-
sive sensors, and some RFID1 systems including governmental and commercial
applications like passports, tickets for public transport, and merchandise tags.

An attractive method of operating such tiny battery-free electronic devices
is to use inductive coupling. In inductive coupling, a component of the battery
1 The term RFID literally means Radio Frequency Identification. The technique ori-

gins from World War II, when challenge-response radio signals were used to identify
aircraft to determine whether they were friendly or hostile. In current terminology,
the term RFID refers to a variation of physical technologies, among which inductive
coupling is a prominent one.
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Reader

Tag

Fig. 1. Inductive coupling. The reader is passing an alternating current through its
antenna coil. The resulting magnetic field will induce a corresponding current in the
coil antenna of the tag.

free device, called a tag, contains an antenna in the shape of a coil. Another
device, which does contain a power source and which, belying its more general
functionality, is commonly called a reader, contains another coil-shaped antenna.
The reader generates an alternating current (of a relatively low frequency) in the
antenna, thereby generating a magnetic field. This magnetic field in turn induces
an alternating current of the same frequency in the tag antenna. Figure 1 shows
the principle.

Inductive coupling not only provides operation power to the device, but the
coupling itself can be modulated and thus provide half duplex communication
between the reader and the tag. However, the reader and the tag need to be
tuned to the same frequency. This limits the methods by which information can
be modulated for transmission on this channel, and in general only amplitude
modulation (AM) is used.

The literature contain few papers with an information theoretic or coding
theoretic approach to inductively coupled channels, and codes used in practice
seem to be selected on an ad hoc basis. This paper, and the corresponding
presentation at 2ICMCTA, will attempt to give an overview of issues related
to coding and cryptography for communication on inductively coupled channels.
We start in Section 2 by discussing coding, including modulation codes and error
controlling codes. Section 3 deals with security related matters.

2 Coding for Inductively Coupled Communication
Channels

The reader and the tag face asymmetrical constraints on the processing com-
plexity that they can support. The reader to tag communication channel must
employ coding schemes that allow very simple decoding methods. The tag to
reader communication, on the other hand, requires a simple encoding method
at the expense of a possibly more complex decoding method.
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2.1 General Coding Requirements

A code used on an inductively coupled channel must provide solutions to the
challenges in a number of areas. Some of these will be discussed in more detail
in the context of modulation codes and of error controlling codes, respectively.
General coding requirements concern processing cost and code rate:

Processing Cost: A tag has strictly limited processing capacity, and hence
can perform only tasks of limited processing complexity. The term “processing
complexity” will not be accurately defined in this paper, because it is difficult
to do so: The term can be extended to cover the cost of all signal processing
associated with transmission or reception of information, to the extent that this
cost depends also on the choice of code. For example, the choice of a simple code
may facilitate the processing associated with bit or frame synchronization, at the
price of for example a reduced code rate, a reduced power content, or inferior
error performance compared to other codes.

Code Rate: As in all coding applications, the number of user bits per sent chan-
nel symbol (or per unit of time) is an essential design parameter. Its importance
depends on the actual application. In general it is desirable with a high code rate,
but this can be traded against other parameters. Many of the applications served
by inductively coupled channels do not operate on large amounts of data, and
hence the time for data transfer must be related to the time required to set up
and manage communications, which may also be affected by the choice of code.

2.2 Modulation Codes for Inductively Coupled Communication
Channels

In the inductive coupling channel shown in Figure 1, note that the antennas of
the reader and the tag need to be tuned to the same frequency. The information
transmission and the power transfer are sensitive to variations in frequency. For
this reason it is not customary to use frequency modulation in order to transmit
information. Hence, although other modulation schemes are feasible, we will
assume binary amplitude modulation where the transmitted signal s(t) at time
t is represented by

s(t) = Ac(1 + u ·m(t)) · cos(Wc · t) (1)

where Ac is the carrier amplitude, Wc is the carrier frequency, u is the modulation
index (0 < u ≤ 1), and m(t) is the modulation encoded message.

Bit synchronization and timing and power content are important considera-
tions for the selection of modulation codes.

Bit Synchronization and Timing: A crucial limitation of a tag is that it
may not possess an internal clock, or even a phase-locked loop. Hence timing
information must be extracted from frequent signal transitions embedded in the
encoded signal. For application specific reasons the tag will not offer the facilities
of an on board oscillator of the phase-locked loop. Thus bit synchronization must
be facilitated by properties of the code.
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Power Content: Since the tag gets its entire power from the signal, the in-
formation should be modulated in a way that maximizes the power transferred
to the tag. With binary amplitude modulation as in (1) it is desirable if the
modulated code sequence m(t) contains as many ”1”s as possible.

Existing Modulation Codes. A variety of modulation codes are being used
in practical implementations. Popular ones include [3,5] the Manchester code,
the 1 out of 4 or 1 out of 256 codes, as well as many proprietary codes.

Existing codes are selected so that they, at least to some degree, observe
some of the general coding requirements set forth in Section 2.1 and the special
considerations mentioned above for modulation codes. The Manchester code,
though not designed for it, still guarantees that on average half of the symbols
are ones, and hence guarantee a certain minimum power. The 1 out of 4 or 1 out
of 256 codes used in the ISO 15693 [5] standard (for near vicinity cards) represent
a variant of permutation modulation and guarantee a high power content but
offer poor runlength properties.

Constrained Codes with Increased Power Content. In [3] new modulation
codes were introduced that observe restrictions on both the runlengths and the
power content. Here follows a brief summary of [3].

A runlength limitation can be represented by a finite state machine (FSM)
[7,8]. For binary codes, each edge in the FSM is associated with a label of one bit.
A legal runlength limited sequence corresponds to the sequence of edge labels
picked up by following a path through the FSM. Each state in the FSM has a
label indicating the recent history of paths that are allowed to pass through that
state.

The code rate of any constrained code cannot be higher than the capacity
C = log2 λ [9], where λ is the largest real eigenvalue of the adjacency matrix or
transition matrix corresponding to the FSM.

For the runlength-and-power constrained codes in [3], theFSMwill observe these
formal requirements,parametrizedby themaximumK of consecutive”1”s,and the
minimum local power m/n (such a code will be referred to as a (K, m, n) code):

– Each state will be labelled by the number of symbols since the last ”0”. If
this number for some state is equal to K, then edges emanating from that
state are not allowed to have an edge label equal to ”1”.

– Each state will also be labelled by the number of ”1”s in the last m − 1
symbols. If this number is less than n, edges emanating from that state are
not allowed to have an edge label equal to ”0”.

Table 1 shows the capacities for a selected set of constraints.
Then the state-splitting algorithm [1] is applied, possibly succeeded by state

merging. In [3] this procedure gave the results shown Table 2.

Variable Length Modulation Codes. In recording applications like mag-
netic recording or optical recording, practitioners frown upon proposals of using
variable length codes because such codes make it hard to determine the actual
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Table 1. Capacities of a selected set of (K, m, n) constraints

K m n Cap.

2 1 3 0.6942
2 3 5 0.2556
3 2 3 0.2878
5 7 10 0.5342
9 8 9 0.1054

Table 2. Examples of codes with comparison of some code properties. K: Maximum
runlength, N : Complexity (number of trellis states). Pmin and Pavg are the minimum
ratio and the average ratio, of the number of ”1”s to the total number of symbols,
minimized (resp. averaged) over long code sequences. Manchester refers to the Manch-
ester code, (0,1) to a well known runlength limited code used in magnetic recording,
and CodeA, CodeB, CodeC, and CodeD are new constructions derived in [3]. As an
example, the encoder state diagram of CodeC is shown in Figure 2.

Code Rate K m n Pmin Pavg N

Manchester 1/2 2 1 3 1/2 1/2 1
(0,1) 2/3 2 1 3 1/3 1/2 2

CodeA 1/4 2 3 5 3/5 .619 16
CodeB 1/3 2 1 2 5/9 11/18 3
CodeC 1/4 3 2 3 11/16 23/32 4
CodeD 1/10 9 8 9 .89 .895 10

amount of physical space required on a magnetic or optical disk for storing a
binary data sequence of a fixed length.

For an application on an inductively coupled channel, use of a variable length
code just means that the time needed for transferring data is variable. However,
the communication time will in any case depend on communication setup time

1/0111

0/1110

1/1101

0/1101 0/1011

1/1011

0/0111

1/0110

Fig. 2. Encoder state diagram for CodeC of Table 2 [3]. Edges are labelled u/abcd,
where u is the user information bit which is input to the encoder and abcd are the four
encoder output bits that depend on the encoder state.
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as well as data transfer time, and will be subject to a wide variation depending
on, among other things, the geometric conditions of the communication scenario.
Therefore the use of such codes may be more attractive for inductively coupled
channels.

Thus, a variable length (K, K − 1, K) code can be implemented by the fol-
lowing simple fixed mapping of (user bit ↔ modulation symbols):

0 ↔ 1K−10, 1 ↔ 1K0, (2)

where 1x denotes a sequence of x ”1”s.
Provided that input symbols are equally probable, the expected length of

these codes is given by 0.5 · (K + K + 1), so the average code rate is 2/(2K + 1).
For numerical examples, the (3,2,3) code has an average rate of 0.2857 and the
(9,8,9) code has an average rate of 0.1053. Consulting with Table 1 we see that
this is very close to capacity in each case. It is also easy to see that Pmin and
Pavg, as defined in the caption of Table 2, are given by

Pmin =
K − 1

K
and Pavg =

2K2 − 1
2(K2 + K)

.

2.3 Codes for Error Control for Inductively Coupled
Communication Channels

Codes for error control need to observe the general coding requirements in Sec-
tion 2.1 in addition to the following:

Noise Immunity and Error Correction: The reader to tag channel usually
has much more signal power than the tag to reader channel. Since the signal-to-
noise ratio (SNR) can be assumed to be high, we will assume that additive noise
is a small problem, and that most errors are due to incorrect timing (see Figure 3
below. Thus, if any error correction code is used, it should be designed to combat
the effects of timing faults. The tag to reader channel may experience a lower
received signal power and hence a lower SNR than the reader to tag channel,
and additive noise may be the limiting factor of the communication. Thus it
may be beneficial to include an error correcting code in order to combat additive
noise. Note that the SNR is likely to be unknown at the receiver as decoding
commences, but may be estimated through the progress of the decoding.

Existing Codes: The Electronic Product Code (EPC) format [10], which reg-
ulates all devices that use inductively coupled channels, mandates that data be
stored on a device using the CCITT-CRC for error detection. This format is
then also used for communications purposes and may be used in an Automatic
Repeat-Request (ARQ) system. The CCITT-CRC is a cyclic redundancy check,
i. e. a shortened cyclic code with generator polynomial x16 + x12 + x5 + 1.

I assume that the choice of error detection scheme here is made out of conve-
nience. However, the choice of code combined with modulation code is not the
best one, for these two reasons.
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1. It is commonly claimed (as in [5]) that the probability of undetected error of
the CRC-CCITT code is, in the worst case, 0.002 % (or 2−16), based on the
case of a binary symmetric channel with a BSC transition probability equal to
1/2. However, it is shown in [4] that for shortened codes, the worst case proba-
bility of undetected error on a BSC for the CRC-CCITT polynomial will occur
for a BSC transition probability less than a half. For a user data length of 80
bits the worst BSC transition probability is about 0.03 in which case the prob-
ability of undetected error is slightly more than 2−16. In the EPC application,
the code will be severely shortened; maybe to a length of few hundred bits or
less. There exist other choices of CRC polynomials that perform much better.

2. Consider the model of transmission that is shown in Figure 3. Errors can
arise in at least three ways: (i) the additive noise is so high that it affects the
sample values, (ii) the threshold based on which the detector determines if
a sample value is low or high may be set incorrectly. This can easily happen
since the exact relative position between tag and reader must be assumed to
be unknown; and hence the nominal “high” signal value is unknown at the
start of communication, (iii) there is a mismatch between the bit cell length
at the reader and the tag sides. Even though timing is resynchronized at the
receiver side upon detection of signal transitions, if the mismatch is large
enough, it may cause a timing error where sample values are interpreted as
belonging to an incorrect bit cell.

The actual channel is in fact, in many applications [6] and especially for
the reader to tag communication more sensitive to timing errors than to the
classical thermal noise that create the typical additive white Gaussian noise

1 01 1 1 01 1 01

Threshold

Bitcell at transmitter

(a)

(b)

Bitcell at receiver

(c)

R R R R R

Fig. 3. Signal detection: (a) modulated sequence (sequence m(t) in (1) (b) Ideal de-
tected signal and detected signal with additive white Gaussian noise added. (c) bit
cells at receiver side may not correspond to the bit cells at the transmitter side be-
cause the clocking circuitry may be out of tune. However, the receiver side bit cells
may be resynchronized each time (marked R in the figure) the receiver, in some way,
detects a change in the signal. The resulting signal is sampled once or several times in
each bit cell.
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channels. With most modulation codes in common use today, timing errors
may translate into insertion and deletion errors and this may complicate the
design of error detection or error correction codes.

Use of Variable Length Modulation Codes: The variable length codes
introduced in equation (2) will convert timing errors into simple additive errors,
and the channel will be transferred into for example a binary symmetric channel
or an AWGN channel, depending on the precise implementation of the signal
detection process.

Error Correcting Codes are in general currently not used for commercial
products for inductively coupled channels. One reason for this may be that error
correction is perceived to be too expensive for the lightweight devices.

Since the tag in particular will have limited computing power, we may antici-
pate that error detection will be favored for this direction of communication. On
the other hand, provided a variable length modulation code is used, an error cor-
recting code designed for the binary symmetric channel or the AWGN channel
may be implemented for the tag to reader communication. In order to minimize
hardware, it may be of interest to use the same code for these purposes. Since
the data lengths may vary, a convolutional code or an LDPC convolutional code
may be favored. Observe that the error detecting capability for such codes has
not been studied much, and this may be an area of future research.

3 Security Issues for Inductively Coupled Communication
Channels

There are several highly publicized failure stories in the area of RFID security2.
Inductively coupled channels have some features that facilitate security. It is

in fact difficult (but not impossible) to eavesdrop stealthily on a conversation
taking place on such systems. The reason is that an eavesdropper needs to insert
his/her own additional antenna into the system of Figure 1, and this may detune
the overall system and make it difficult or impossible to carry out the legitimate
conversation. An ordinary antenna for these channels need to be very close,
typically around 20cm. Specialized eavesdropping antennas may pick up signals
at a distance of a few meters, but covert eavesdropping is more difficulty than
for ordinary wireless channel. Nevertheless it is appropriate to apply a simple
cipher to communications.

Authentication is a real and generally unsolved problem. Depending on the
application, this authentication should cover both the reader and the tag. A
security problem which is particular to inductively coupled channels is that the
tag has severely limited computing power, so that public key cryptography may
be difficult to implement.

2 One example involves Dutch bus cards [12].
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1: Op;IDR,N

Reader

Secret : R

Public: IDR

Tag

Secret : T

Public: IDT

Database

Knows all secrets

3: IDR,N,{M}T,{E1,IDT}R+N

2: IDT,{M}T,E1={M,K,Op}T+M+N

4: {K}R+N

5: {K}K

Select

random N
Select

random M

random K

Decrypt

Twice,

Check

authority

Decrypt

Decrypt,

Verify K

Fig. 4. An authentication and key exchange protocol for lightweight devices [2]. The
reader and the tag have public identities IDR and IDT, respectively. Each of these
devices has a secret key, R and T, known only to the device itself and to the database.
N, M, and K are nonces chosen at random and without reuse. The protocol has five
steps: 1) The reader selects nonce N, and sends the intended operation Op, its own
identity IDR, and the nonce N to the tag, 2) The tag generates nonces M and K and
sends a packet to the reader consisting of (i) its own identity IDT, (ii) the nonce M
encrypted by T, and (iii) E1 = (M, K, Op) encrypted by T+M+N. 3) The reader sends
a packet to the database consisting of IDT, N,Op, the cryptogram [M encrypted by T]
received from the tag, and (E1, IDT) encrypted by R + N. 4) The database now can
resolve all the cryptograms and if the cryptograms match (i. e. the keys are correct)
and the reader is authorized to perform the requested operation, sends the response
packet consisting of K encrypted by R+N. If this packet is received, the reader at this
point knows that the tag is legitimate. 5) The reader now sends K encrypted by K to
the tag. If the tag recognizes K, the reader is considered authenticated and authorized.
The ciphers are intended to be stream ciphers. For a feasibility study, the stream cipher
Pomaranch has been implemented on a passive sensor device.

Stream ciphers are in general simple to implement and may provide solutions
to some of the security challenges in communication on inductively coupled chan-
nels. In [2] the authors proposed an authentication protocol for such channels,
based on stream ciphers and relying on reader access to a “big brother” database
server that knows secret keys of all devices in the system. The protocol is shown
in Figure 4.
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4 Summary and Disclaimer

In this paper I have attempted to address some issues in coding theory and
cryptography that are encountered when designing communication systems for
inductively coupled channels. In the talk at 2ICMCTA I intend to elaborate
on these issues. Please note that among the applications that use inductively
coupled channels, there are many for which other additional considerations must
be made. This, notably, includes multiple access channel allocation issues for
medium range communications, and many security related issues.
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